#include "stm32c0xx_hal.h"
#include <stdio.h>
#include <string.h>
#include <math.h>
ADC_HandleTypeDef hadc1;
UART_HandleTypeDef huart2;
const float BETA = 3950.0; // Beta Coefficient of the thermistor
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM2_Init(void);
void Error_Handler(void);
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim2;
int main(void)
{
HAL_Init();
// Configure the system clock
SystemClock_Config();
//HAL_ADC_GetValue();
// Initialize peripherals
MX_GPIO_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
char buffer[50];
uint16_t adcValue;
float temperatureC = 0;
uint16_t AD_RES = 0;
MX_ADC1_Init();
MX_TIM2_Init();
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
HAL_ADCEx_Calibration_Start(&hadc1);
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 1); // Poll ADC1 Perihperal & TimeOut = 1mSec
AD_RES = HAL_ADC_GetValue(&hadc1);
TIM1->CCR1 = (AD_RES<<4);
HAL_Delay(1);
// Start an ADC conversion
if (HAL_ADC_Start(&hadc1) != HAL_OK)
{
Error_Handler();
//printf("Fail1");
}
// Wait for the conversion to complete
if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) != HAL_OK) {
Error_Handler();
//printf("Fail2");
}
// Read the ADC value
adcValue = HAL_ADC_GetValue(&hadc1);
// Calculate temperature in degrees Celsius
temperatureC = 1.0 / (log(1 / (1023.0 / adcValue - 1.0)) / BETA + 1.0 / 298.15) - 273.15;
// Format and send the temperature over UART
printf("ADC value, %s\n", (uint16_t *)&adcValue);
sprintf(buffer, sizeof(buffer), "Temperature: %.2f ℃\n", temperatureC);
HAL_UART_Transmit(&huart2, (uint8_t *)buffer, strlen(buffer), HAL_MAX_DELAY);
HAL_Delay(1000); // Delay for 1 second between readings
}
}
void SystemClock_Config(void)
{
// Configure the system clock as needed
// This depends on your specific STM32 Nucleo model
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
// Initialize GPIO pins as needed
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM1;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
// HAL_TIM_MspPostInit(&htim2);
}
static void MX_USART2_UART_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
// PA2 ------> USART2_TX
// PA3 ------> USART2_RX
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
void Error_Handler(void)
{
// Handle error condition (e.g., LED blinking, error message)
while (1) {
// Handle the error as needed
while (1)
{
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // Toggle the LED rapidly to indicate an error
HAL_Delay(100);
}
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line) {
// Custom assert function (optional)
// Handle assert failure here
}
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
int _write(int file, uint8_t *ptr, int len)
{
switch (file)
{
case STDOUT_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
case STDERR_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
default:
return -1;
}
return len;
}
#endif