#include "FastLED.h"
#define NUM_STRIPS 8
#define NUM_LEDS_PER_STRIP 90
#define NUM_LEDS ((NUM_LEDS_PER_STRIP) * (NUM_STRIPS))
CRGB leds[NUM_LEDS];
CRGBPalette16 palette = RainbowStripeColors_p;
void setup() {
Serial.begin(115200);
FastLED.addLeds<NEOPIXEL, 8> (leds, 0 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 27>(leds, 1 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 16>(leds, 2 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 17>(leds, 3 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 25>(leds, 4 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 26>(leds, 5 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 12>(leds, 6 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 13>(leds, 7 * NUM_LEDS_PER_STRIP, NUM_LEDS_PER_STRIP);
}
void loop() {
uint32_t startHue = millis() * 128;
uint32_t yHueDelta = ((uint32_t)sin16(millis() * 5) * 2);
uint32_t xHueDelta = ((uint32_t)cos16(millis() * 6) * 2);
uint32_t lineStartHue = startHue - (NUM_STRIPS / 2) * yHueDelta;
uint32_t yd2 = 11234;
uint32_t xd2 = 678;
CRGB *led = leds;
for (byte y = 0; y < NUM_STRIPS; y++) {
lineStartHue += yHueDelta;
yHueDelta += yd2;
uint32_t pixelHue = lineStartHue - (NUM_LEDS_PER_STRIP / 2) * xHueDelta;
uint32_t xhd = xHueDelta;
for (byte x = 0; x < NUM_LEDS_PER_STRIP; x++) {
pixelHue += xhd;
xhd += xd2;
// *led++ = ColorFromPalette(palette, pixelHue >> 15, 255, LINEARBLEND);
*led++ = ColorFromPaletteExtended(palette, pixelHue >> 7, 255, LINEARBLEND);
}
}
FastLED.show();
}
// https://github.com/FastLED/FastLED/pull/202
CRGB ColorFromPaletteExtended(const CRGBPalette16& pal, uint16_t index, uint8_t brightness, TBlendType blendType) {
// Extract the four most significant bits of the index as a palette index.
uint8_t index_4bit = (index >> 12);
// Calculate the 8-bit offset from the palette index.
uint8_t offset = (uint8_t)(index >> 4);
// Get the palette entry from the 4-bit index
const CRGB* entry = &(pal[0]) + index_4bit;
uint8_t red1 = entry->red;
uint8_t green1 = entry->green;
uint8_t blue1 = entry->blue;
uint8_t blend = offset && (blendType != NOBLEND);
if (blend) {
if (index_4bit == 15) {
entry = &(pal[0]);
} else {
entry++;
}
// Calculate the scaling factor and scaled values for the lower palette value.
uint8_t f1 = 255 - offset;
red1 = scale8_LEAVING_R1_DIRTY(red1, f1);
green1 = scale8_LEAVING_R1_DIRTY(green1, f1);
blue1 = scale8_LEAVING_R1_DIRTY(blue1, f1);
// Calculate the scaled values for the neighbouring palette value.
uint8_t red2 = entry->red;
uint8_t green2 = entry->green;
uint8_t blue2 = entry->blue;
red2 = scale8_LEAVING_R1_DIRTY(red2, offset);
green2 = scale8_LEAVING_R1_DIRTY(green2, offset);
blue2 = scale8_LEAVING_R1_DIRTY(blue2, offset);
cleanup_R1();
// These sums can't overflow, so no qadd8 needed.
red1 += red2;
green1 += green2;
blue1 += blue2;
}
if (brightness != 255) {
// nscale8x3_video(red1, green1, blue1, brightness);
nscale8x3(red1, green1, blue1, brightness);
}
return CRGB(red1, green1, blue1);
}