#include <FastLED.h>
#define LED_PIN 3
#define COLOR_ORDER GRB
#define CHIPSET WS2811
#define BRIGHTNESS 150
CRGB col1 = CRGB::White ;
CRGB col2 = CRGB::Fuchsia;
CRGB col3 = CRGB::Maroon;
CRGB black = CRGB::Black;
CRGB col4 = CRGB::Green;
CRGB col5 = CRGB:: Yellow;
CRGB col6 = CRGB:: Blue;
CRGBPalette16 palDrop = {
col1,
col1,
col1,
col3,
col5,
col5,
col5,
col1,
col6,
col6,
col6,
col5,
col4,
col4,
col4,
col1 };
// Helper functions for an two-dimensional XY matrix of pixels.
// Simple 2-D demo code is included as well.
//
// XY(x,y) takes x and y coordinates and returns an LED index number,
// for use like this: leds[ XY(x,y) ] == CRGB::Red;
// No error checking is performed on the ranges of x and y.
//
// XYsafe(x,y) takes x and y coordinates and returns an LED index number,
// for use like this: leds[ XY(x,y) ] == CRGB::Red;
// Error checking IS performed on the ranges of x and y, and an
// index of "-1" is returned. Special instructions below
// explain how to use this without having to do your own error
// checking every time you use this function.
// This is a slightly more advanced technique, and
// it REQUIRES SPECIAL ADDITIONAL setup, described below.
// Params for width and height
const uint8_t kMatrixWidth = 5;
const uint8_t kMatrixHeight = 30;
// Param for different pixel layouts
const bool kMatrixSerpentineLayout = false;
// Set 'kMatrixSerpentineLayout' to false if your pixels are
// laid out all running the same way, like this:
//
// 0 > 1 > 2 > 3 > 4
// |
// .----<----<----<----'
// |
// 5 > 6 > 7 > 8 > 9
// |
// .----<----<----<----'
// |
// 10 > 11 > 12 > 13 > 14
// |
// .----<----<----<----'
// |
// 15 > 16 > 17 > 18 > 19
//
// Set 'kMatrixSerpentineLayout' to true if your pixels are
// laid out back-and-forth, like this:
//
// 0 > 1 > 2 > 3 > 4
// |
// |
// 9 < 8 < 7 < 6 < 5
// |
// |
// 10 > 11 > 12 > 13 > 14
// |
// |
// 19 < 18 < 17 < 16 < 15
//
// Bonus vocabulary word: anything that goes one way
// in one row, and then backwards in the next row, and so on
// is call "boustrophedon", meaning "as the ox plows."
// This function will return the right 'led index number' for
// a given set of X and Y coordinates on your matrix.
// IT DOES NOT CHECK THE COORDINATE BOUNDARIES.
// That's up to you. Don't pass it bogus values.
//
// Use the "XY" function like this:
//
// for( uint8_t x = 0; x < kMatrixWidth; x++) {
// for( uint8_t y = 0; y < kMatrixHeight; y++) {
//
// // Here's the x, y to 'led index' in action:
// leds[ XY( x, y) ] = CHSV( random8(), 255, 255);
//
// }
// }
//
//
uint16_t XY( uint8_t x, uint8_t y)
{
uint16_t i;
if( kMatrixSerpentineLayout == false) {
i = (y * kMatrixWidth) + x;
}
if( kMatrixSerpentineLayout == true) {
if( y & 0x01) {
// Odd rows run backwards
uint8_t reverseX = (kMatrixWidth - 1) - x;
i = (y * kMatrixWidth) + reverseX;
} else {
// Even rows run forwards
i = (y * kMatrixWidth) + x;
}
}
return i;
}
// Once you've gotten the basics working (AND NOT UNTIL THEN!)
// here's a helpful technique that can be tricky to set up, but
// then helps you avoid the needs for sprinkling array-bound-checking
// throughout your code.
//
// It requires a careful attention to get it set up correctly, but
// can potentially make your code smaller and faster.
//
// Suppose you have an 8 x 5 matrix of 40 LEDs. Normally, you'd
// delcare your leds array like this:
// CRGB leds[40];
// But instead of that, declare an LED buffer with one extra pixel in
// it, "leds_plus_safety_pixel". Then declare "leds" as a pointer to
// that array, but starting with the 2nd element (id=1) of that array:
// CRGB leds_with_safety_pixel[41];
// CRGB* const leds( leds_plus_safety_pixel + 1);
// Then you use the "leds" array as you normally would.
// Now "leds[0..N]" are aliases for "leds_plus_safety_pixel[1..(N+1)]",
// AND leds[-1] is now a legitimate and safe alias for leds_plus_safety_pixel[0].
// leds_plus_safety_pixel[0] aka leds[-1] is now your "safety pixel".
//
// Now instead of using the XY function above, use the one below, "XYsafe".
//
// If the X and Y values are 'in bounds', this function will return an index
// into the visible led array, same as "XY" does.
// HOWEVER -- and this is the trick -- if the X or Y values
// are out of bounds, this function will return an index of -1.
// And since leds[-1] is actually just an alias for leds_plus_safety_pixel[0],
// it's a totally safe and legal place to access. And since the 'safety pixel'
// falls 'outside' the visible part of the LED array, anything you write
// there is hidden from view automatically.
// Thus, this line of code is totally safe, regardless of the actual size of
// your matrix:
// leds[ XYsafe( random8(), random8() ) ] = CHSV( random8(), 255, 255);
//
// The only catch here is that while this makes it safe to read from and
// write to 'any pixel', there's really only ONE 'safety pixel'. No matter
// what out-of-bounds coordinates you write to, you'll really be writing to
// that one safety pixel. And if you try to READ from the safety pixel,
// you'll read whatever was written there last, reglardless of what coordinates
// were supplied.
#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
CRGB leds_plus_safety_pixel[ NUM_LEDS + 1];
CRGB* const leds( leds_plus_safety_pixel + 1);
#include "SFX.h"
#include "Waterfall.h"
uint16_t XYsafe( uint8_t x, uint8_t y)
{
if( x >= kMatrixWidth) return -1;
if( y >= kMatrixHeight) return -1;
return XY(x,y);
}
// Demo that USES "XY" follows code below
class drop {
private:
float speed;
float fRow;
float fCol;
int life;
int lifeExp;
int palShift;
bool alight;
CRGBPalette16 pal;
public:
drop(){
alight = false;
};
bool eject (float c, float r, float s, CRGBPalette16 p ){
if (alight) return false;
palShift = 1;
alight = true;
fCol = c;
fRow = r;
speed = s;
pal = p;
lifeExp = random8(200) + 200;
life = lifeExp;
return true;
};
bool display(){
int index;
if (!alight) return alight ;
life--;
index =64.0f - ((float)life/(float)lifeExp * 64.0f) + (64.0f * palShift);
fRow +=speed;
// apply gravity to speed
// Make gravity have less of an effect as
// the drop reaches the end of its lifespan
// i.e.as it gets lighter and floats
speed -= .0023 * (float)life/(float)lifeExp;
speed *= 0.97f;
// evapourate the drop if it reaches the edge
// or reaches the end of its lifespan
if (fRow<5 || fRow >=kMatrixHeight){
alight = false;
return false ;
}
int shade= constrain((lifeExp-life)*4,0,100);
CRGB col = CHSV(120, 100-shade,255);
if (life<0){
col = CRGB::White;
alight= false;
}
leds[XY((long)fCol, (long)fRow)] = col ;
return alight;
}
};
const int num_drops = 1;
drop droplets[num_drops];
void ejectDrop (int col, int row){
static unsigned long count[5];
unsigned long now = millis();
long delay = random(600);
if (now - count[col]>delay) {
count[col] = now;
for (int i=0; i<num_drops; i++){
if (droplets[i].eject(col,row,0.26f + (i/40.0f) , palDrop )) break;
}
}
}
void Splash(int i, int wave ){
const int noiseLength = 100;
const int splashHeight=7;
static uint8_t noise [kMatrixWidth][noiseLength];
static uint8_t shift = 0;
static float fShift = 0;
// Check if we need more fill_noise
if (shift ==0){
fShift = noiseLength - splashHeight;
memset(noise, 0, sizeof(noise));
fill_raw_2dnoise8 (*noise, kMatrixWidth, noiseLength, 1, random8(), 50, random8(), 50, 120);
}
fShift -= 0.012f;
shift = (long)fShift;
for (int j=0; j<splashHeight; j++){
int plane = (3 * (17-wave)) + (j*25);
CRGB col = sky(i , j+wave);
if (noise[i][j+shift] > plane) {
if (j>3) col =CHSV(170 - (wave*3),90,255) ;
else col = CHSV(170-(3*wave),255,255);
}
leds [XY(i,j + wave)] = col;
if ((j+wave)>17 && col != sky(i, j+wave)) ejectDrop(i, j+wave);
}
}
CRGB sky(int i, int j){
return CRGB((j*7) + +2,(j*7),(j*7)) ;
}
void drawFantasia(){
const int splashWidth=3 ;
static uint8_t start=0;
FastLED.clear(false);
uint8_t wave=beatsin8(40,2,8,0,0) + beatsin8(10,0,7,0,0);
uint8_t trough = 16-wave;
//Draw some sky
for (int i = 0; i< kMatrixWidth; i++){
for(int j=0;j<kMatrixHeight; j++){
leds[XY(i,j)] = sky(i,j);
}
}
if (trough == wave)
start++;
start = mod8(start, kMatrixWidth);
for (int iT = splashWidth; iT < kMatrixWidth; iT ++){
int i = start + iT ;
i = mod8(i,kMatrixWidth);
for (int j = 0; j<trough; j++){
leds[XY(i,j )] = CHSV(170-(3*j),255, 255) ;
}
Splash(i,trough);
}
for (int iT=0; iT <splashWidth;iT++) {
int i= start + iT;
i = mod8(i,kMatrixWidth);
for (int f=0; f<wave; f++) {
leds[XY(i,f)] = CHSV(170-(3*f) ,255,255);
}
Splash(i, wave);
}
for(int d=0; d<num_drops; d++ ){
droplets[d].display();
}
}
void loop()
{
//drawFantasia();
displayWaterfall();
FastLED.show();
}
void setup() {
Serial.begin(9600);
FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalSMD5050);
FastLED.setBrightness( BRIGHTNESS );
}
uno:A5.2
uno:A4.2
uno:AREF
uno:GND.1
uno:13
uno:12
uno:11
uno:10
uno:9
uno:8
uno:7
uno:6
uno:5
uno:4
uno:3
uno:2
uno:1
uno:0
uno:IOREF
uno:RESET
uno:3.3V
uno:5V
uno:GND.2
uno:GND.3
uno:VIN
uno:A0
uno:A1
uno:A2
uno:A3
uno:A4
uno:A5
neopixels:DOUT
neopixels:VDD
neopixels:VSS
neopixels:DIN