/*
LED blink example from TaskScheduler.
Source: https://github.com/arkhipenko/TaskScheduler/tree/master/examples/Scheduler_example00_Blink
*/
// #define _TASK_TIMECRITICAL // Enable monitoring scheduling overruns
#define _TASK_SLEEP_ON_IDLE_RUN // Enable 1 ms SLEEP_IDLE powerdowns between tasks if no callback methods were invoked during the pass
#define _TASK_STATUS_REQUEST // Compile with support for StatusRequest functionality - triggering tasks on status change events in addition to time only
// #define _TASK_WDT_IDS // Compile with support for wdt control points and task ids
// #define _TASK_LTS_POINTER // Compile with support for local task storage pointer
// #define _TASK_PRIORITY // Support for layered scheduling priority
// #define _TASK_MICRO_RES // Support for microsecond resolution
// #define _TASK_STD_FUNCTION // Support for std::function (ESP8266 and ESP32 ONLY)
// #define _TASK_DEBUG // Make all methods and variables public for debug purposes
// #define _TASK_INLINE // Make all methods "inline" - needed to support some multi-tab, multi-file implementations
// #define _TASK_TIMEOUT // Support for overall task timeout
// #define _TASK_OO_CALLBACKS // Support for dynamic callback method binding
#include <TaskScheduler.h>
// Debug and Test options
#define _DEBUG_
//#define _TEST_
#ifdef _DEBUG_
#define _PP(a) Serial.print(a);
#define _PL(a) Serial.println(a);
#else
#define _PP(a)
#define _PL(a)
#endif
// LED_BUILTIN 13
#if defined( ARDUINO_ARCH_ESP32 )
#define LED_BUILTIN 23 // esp32 dev2 kit does not have LED
#endif
// Scheduler
Scheduler ts;
/*
Approach 1: LED is driven by the boolean variable; false = OFF, true = ON
*/
#define PERIOD1 500
#define DURATION 10000
void blink1CB();
Task tBlink1 ( PERIOD1 * TASK_MILLISECOND, DURATION / PERIOD1, &blink1CB, &ts, true );
/*
Approac 2: two callback methods: one turns ON, another turns OFF
*/
#define PERIOD2 400
void blink2CB_ON();
void blink2CB_OFF();
Task tBlink2 ( PERIOD2 * TASK_MILLISECOND, DURATION / PERIOD2, &blink2CB_ON, &ts, false );
/*
Approach 3: Use RunCounter
*/
#define PERIOD3 300
void blink3CB();
Task tBlink3 (PERIOD3 * TASK_MILLISECOND, DURATION / PERIOD3, &blink3CB, &ts, false);
/*
Approach 4: Use status request objects to pass control from one task to the other
*/
#define PERIOD4 200
bool blink41OE();
void blink41();
void blink42();
void blink42OD();
Task tBlink4On ( PERIOD4 * TASK_MILLISECOND, TASK_ONCE, blink41, &ts, false, &blink41OE );
Task tBlink4Off ( PERIOD4 * TASK_MILLISECOND, TASK_ONCE, blink42, &ts, false, NULL, &blink42OD );
/*
Approach 5: Two interleaving tasks
*/
#define PERIOD5 600
bool blink51OE();
void blink51();
void blink52();
void blink52OD();
Task tBlink5On ( 600 * TASK_MILLISECOND, DURATION / PERIOD5, &blink51, &ts, false, &blink51OE );
Task tBlink5Off ( 600 * TASK_MILLISECOND, DURATION / PERIOD5, &blink52, &ts, false, NULL, &blink52OD );
/*
Approach 6: RunCounter-based with random intervals
*/
#define PERIOD6 300
void blink6CB();
bool blink6OE();
void blink6OD();
Task tBlink6 ( PERIOD6 * TASK_MILLISECOND, DURATION / PERIOD6, &blink6CB, &ts, false, &blink6OE, &blink6OD );
void setup() {
// put your setup code here, to run once:
#if defined(_DEBUG_) || defined(_TEST_)
Serial.begin(115200);
delay(TASK_SECOND);
_PL("TaskScheduler Blink example");
_PL("Blinking for 10 seconds using various techniques\n");
delay(2 * TASK_SECOND);
#endif
pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
ts.execute();
}
inline void LEDOn() {
digitalWrite( LED_BUILTIN, HIGH );
}
inline void LEDOff() {
digitalWrite( LED_BUILTIN, LOW );
}
// === 1 =======================================
bool LED_state = false;
void blink1CB() {
if ( tBlink1.isFirstIteration() ) {
_PP(millis());
_PL(": Blink1 - simple flag driven");
LED_state = false;
}
if ( LED_state ) {
LEDOff();
LED_state = false;
}
else {
LEDOn();
LED_state = true;
}
if ( tBlink1.isLastIteration() ) {
tBlink2.restartDelayed( 2 * TASK_SECOND );
LEDOff();
}
}
// === 2 ======================================
void blink2CB_ON() {
if ( tBlink2.isFirstIteration() ) {
_PP(millis());
_PL(": Blink2 - 2 callback methods");
}
LEDOn();
tBlink2.setCallback( &blink2CB_OFF );
if ( tBlink2.isLastIteration() ) {
tBlink3.restartDelayed( 2 * TASK_SECOND );
LEDOff();
}
}
void blink2CB_OFF() {
LEDOff();
tBlink2.setCallback( &blink2CB_ON );
if ( tBlink2.isLastIteration() ) {
tBlink3.restartDelayed( 2 * TASK_SECOND );
LEDOff();
}
}
// === 3 =====================================
void blink3CB() {
if ( tBlink3.isFirstIteration() ) {
_PP(millis());
_PL(": Blink3 - Run Counter driven");
}
if ( tBlink3.getRunCounter() & 1 ) {
LEDOn();
}
else {
LEDOff();
}
if ( tBlink3.isLastIteration() ) {
tBlink4On.setOnEnable( &blink41OE );
tBlink4On.restartDelayed( 2 * TASK_SECOND );
LEDOff();
}
}
// === 4 =============================================
int counter = 0;
bool blink41OE() {
_PP(millis());
_PL(": Blink4 - Internal status request based");
counter = 0;
tBlink4On.setOnEnable( NULL );
return true;
}
void blink41() {
// _PP(millis());
// _PL(": blink41");
LEDOn();
StatusRequest* r = tBlink4On.getInternalStatusRequest();
tBlink4Off.waitForDelayed( r );
counter++;
}
void blink42() {
// _PP(millis());
// _PL(": blink42");
LEDOff();
StatusRequest* r = tBlink4Off.getInternalStatusRequest();
tBlink4On.waitForDelayed( r );
counter++;
}
void blink42OD() {
if ( counter >= DURATION / PERIOD4 ) {
tBlink4On.disable();
tBlink4Off.disable();
tBlink5On.setOnEnable( &blink51OE );
tBlink5On.restartDelayed( 2 * TASK_SECOND );
tBlink5Off.restartDelayed( 2 * TASK_SECOND + PERIOD5 / 2 );
LEDOff();
}
}
// === 5 ==========================================
bool blink51OE() {
_PP(millis());
_PL(": Blink5 - Two interleaving tasks");
tBlink5On.setOnEnable( NULL );
return true;
}
void blink51() {
// _PP(millis());
// _PL(": blink51");
LEDOn();
}
void blink52() {
// _PP(millis());
// _PL(": blink52");
LEDOff();
}
void blink52OD() {
tBlink6.restartDelayed( 2 * TASK_SECOND );
LEDOff();
}
// === 6 ============================================
long interval6 = 0;
bool blink6OE() {
_PP(millis());
_PP(": Blink6 - RunCounter + Random ON interval = ");
interval6 = random( 100, 901 );
tBlink6.setInterval( interval6 );
_PL( interval6 );
tBlink6.delay( 2 * TASK_SECOND );
return true;
}
void blink6CB() {
if ( tBlink6.getRunCounter() & 1 ) {
LEDOn();
tBlink6.setInterval( interval6 );
}
else {
LEDOff();
tBlink6.setInterval( TASK_SECOND - interval6 );
}
}
void blink6OD() {
tBlink1.restartDelayed( 2 * TASK_SECOND );
LEDOff();
}