#include <FastLED.h>

#define COLOR_ORDER GRB
#define CHIPSET     WS2811
#define NUM_LEDS    16

#define BRIGHTNESS  255
#define FRAMES_PER_SECOND 60

bool gReverseDirection = false;

CRGB strip1[NUM_LEDS];
CRGB strip2[NUM_LEDS];
CRGB strip3[NUM_LEDS];
CRGB strip4[NUM_LEDS];

void setup() {
  FastLED.addLeds<CHIPSET, 5, COLOR_ORDER>(strip1, NUM_LEDS);
  FastLED.addLeds<CHIPSET, 6, COLOR_ORDER>(strip2, NUM_LEDS);
  FastLED.addLeds<CHIPSET, 7, COLOR_ORDER>(strip3, NUM_LEDS);
  FastLED.addLeds<CHIPSET, 8, COLOR_ORDER>(strip4, NUM_LEDS);
  FastLED.setBrightness( BRIGHTNESS );
}

uint8_t t = 0;

void loop()
{
  // Add entropy to random number generator; we use a lot of it.
  // random16_add_entropy( random());

  Fire2012(); // run simulation frame

  for (int i = 0; i < NUM_LEDS; i++) {
    strip2[i] = CHSV(sin8(t), cos8(t)*sin8(i), 255);
    strip3[i] = CHSV(sin8(t)*cos(i), cos8(t), 255);
    strip4[i] = CHSV(sin8(i), cos8(t), 255);
  }
  t++;

  FastLED.show(); // display this frame
  FastLED.delay(1000 / FRAMES_PER_SECOND);
}


// Fire2012 by Mark Kriegsman, July 2012
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
////
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line.  Every cycle through the simulation,
// four steps are performed:
//  1) All cells cool down a little bit, losing heat to the air
//  2) The heat from each cell drifts 'up' and diffuses a little
//  3) Sometimes randomly new 'sparks' of heat are added at the bottom
//  4) The heat from each cell is rendered as a color into the leds array
//     The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames.  More cooling = shorter flames.
// Default 50, suggested range 20-100
#define COOLING  55

// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire.  Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120


void Fire2012()
{
// Array of temperature readings at each simulation cell
  static byte heat[NUM_LEDS];

  // Step 1.  Cool down every cell a little
    for( int i = 0; i < NUM_LEDS; i++) {
      heat[i] = qsub8( heat[i],  random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
    }

    // Step 2.  Heat from each cell drifts 'up' and diffuses a little
    for( int k= NUM_LEDS - 1; k >= 2; k--) {
      heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
    }

    // Step 3.  Randomly ignite new 'sparks' of heat near the bottom
    if( random8() < SPARKING ) {
      int y = random8(7);
      heat[y] = qadd8( heat[y], random8(160,255) );
    }

    // Step 4.  Map from heat cells to LED colors
    for( int j = 0; j < NUM_LEDS; j++) {
      CRGB color = HeatColor( heat[j]);
      int pixelnumber;
      if( gReverseDirection ) {
        pixelnumber = (NUM_LEDS-1) - j;
      } else {
        pixelnumber = j;
      }
      strip1[pixelnumber] = color;
    }
}