#include <Wire.h>
#include <Adafruit_SSD1306.h>
#include <Adafruit_GFX.h>
Adafruit_SSD1306 display(128, 64); // 128 pixels width, 64 pixels height
const int mpuAddress = 0x68; // I2C address of the MPU-6050
float xByGyro, yByGyro, zByGyro; // Global variables for the rotation by gyro
//menentukan posisi dari kubus
const int xOrigin = 64;
const int yOrigin = 32;
const float viewDistance = 150.0; //menentukan arah hadap default
// Vertices for a cube
// A cube has 8 corners and each coordinate has x,y,z values.
#define NUM_VERTICES 8
const int cube_vertex[NUM_VERTICES][3] =
{
{ -20, -20, 20 }, // x, y, z
{ 20, -20, 20 },
{ 20, 20, 20 },
{ -20, 20, 20 },
{ -20, -20, -20 },
{ 20, -20, -20 },
{ 20, 20, -20 },
{ -20, 20, -20 }
};
// The wirefram is to display the lines on the OLED display
// It contains the corners of the shape in 2D coordinates
int wireframe[NUM_VERTICES][2];
void setup()
{
Serial.begin(9600);
Wire.begin();
// Initialize the OLED display and test if it is connected.
if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C))
{
Serial.println(F( "SSD1306 allocation failed"));
for(;;); // halt the sketch if error encountered
}
// Initialize the MPU-6050 and test if it is connected.
Wire.beginTransmission(mpuAddress);
Wire.write(0x6B); // PWR_MGMT_1 register
Wire.write(0); // set to zero (wakes up the MPU-6050)
auto error = Wire.endTransmission();
if( error != 0)
{
Serial.println(F( "Error, MPU-6050 not found"));
for(;;); // halt the sketch if error encountered
}
}
void loop()
{
Wire.beginTransmission( mpuAddress);
Wire.write( 0x3B); // Starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission( false); // No stop condition for a repeated start
// The MPU-6050 has the values as signed 16-bit integers.
// There are 7 values in 14 registers.
int16_t AcX, AcY, AcZ, Tmp, GyX, GyY, GyZ;
Wire.requestFrom( mpuAddress, 14); // request a total of 14 bytes
AcX = Wire.read()<<8 | Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)
AcY = Wire.read()<<8 | Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AcZ = Wire.read()<<8 | Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp = Wire.read()<<8 | Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyX = Wire.read()<<8 | Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyY = Wire.read()<<8 | Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyZ = Wire.read()<<8 | Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
// The acceleration is directly mapped into the angles.
// That is rather artificial.
// The combined gravity could be used for an angle, while ignoring the strength.
//
// The gyro sets the rotation speed.
// The angle created by the rotation speed is added to angle by the accelerometer.
//
// The conversion from the sensor values to the rotation is just a value
// that makes it look good on the display.
float xByAccel = (float) AcX * 0.0001; // static angle by accelerometer
float yByAccel = (float) AcY * 0.0001;
float zByAccel = (float) AcZ * 0.0001;
xByGyro += (float) GyX * 0.00001; // moving angle by gyro
yByGyro += (float) GyY * 0.00001;
zByGyro += (float) GyZ * 0.00001;
float x = xByAccel + xByGyro; // combine both angles
float y = yByAccel + yByGyro;
float z = zByAccel + zByGyro;
// Keep the radians in range (although the cos/sin functions accept every value)
if( x < 0.0)
x += 2.0 * M_PI;
else if( x > 2.0 * M_PI)
x -= 2.0 * M_PI;
if( y < 0.0)
y += 2.0 * M_PI;
else if( y > 2.0 * M_PI)
y -= 2.0 * M_PI;
if( z < 0.0)
z += 2.0 * M_PI;
else if( z > 2.0 * M_PI)
z -= 2.0 * M_PI;
// Draw 3D picture
for (int i = 0; i < NUM_VERTICES; i++)
{
// Rotate Y
float rotx = cube_vertex[i][2] * sin(y) + cube_vertex[i][0] * cos(y);
float roty = cube_vertex[i][1];
float rotz = cube_vertex[i][2] * cos(y) - cube_vertex[i][0] * sin(y);
// Rotate X
float rotxx = rotx;
float rotyy = roty * cos(x) - rotz * sin(x);
float rotzz = roty * sin(x) + rotz * cos(x);
// Rotate Z
float rotxxx = rotxx * cos(z) - rotyy * sin(z);
float rotyyy = rotxx * sin(z) + rotyy * cos(z);
float rotzzz = rotzz;
// Add depth perspective
rotxxx *= viewDistance / (viewDistance + rotzzz);
rotyyy *= viewDistance / (viewDistance + rotzzz);
// Bring to middle of screen
rotxxx += (float) xOrigin;
rotyyy += (float) yOrigin;
// Store new vertices values for wireframe drawing
wireframe[i][0] = (int) rotxxx;
wireframe[i][1] = (int) rotyyy;
wireframe[i][2] = (int) rotzzz;
}
draw_wireframe();
}
void draw_wireframe(void)
{
// Start with a empty buffer
display.clearDisplay();
// A cube has 8 points and 12 sides.
// The wireframe contains the 8 points, and the 12 lines are drawn here.
display.drawLine( wireframe[0][0], wireframe[0][1], wireframe[1][0], wireframe[1][1], SSD1306_WHITE);
display.drawLine( wireframe[1][0], wireframe[1][1], wireframe[2][0], wireframe[2][1], SSD1306_WHITE);
display.drawLine( wireframe[2][0], wireframe[2][1], wireframe[3][0], wireframe[3][1], SSD1306_WHITE);
display.drawLine( wireframe[3][0], wireframe[3][1], wireframe[0][0], wireframe[0][1], SSD1306_WHITE);
display.drawLine( wireframe[4][0], wireframe[4][1], wireframe[5][0], wireframe[5][1], SSD1306_WHITE);
display.drawLine( wireframe[5][0], wireframe[5][1], wireframe[6][0], wireframe[6][1], SSD1306_WHITE);
display.drawLine( wireframe[6][0], wireframe[6][1], wireframe[7][0], wireframe[7][1], SSD1306_WHITE);
display.drawLine( wireframe[7][0], wireframe[7][1], wireframe[4][0], wireframe[4][1], SSD1306_WHITE);
display.drawLine( wireframe[0][0], wireframe[0][1], wireframe[4][0], wireframe[4][1], SSD1306_WHITE);
display.drawLine( wireframe[1][0], wireframe[1][1], wireframe[5][0], wireframe[5][1], SSD1306_WHITE);
display.drawLine( wireframe[2][0], wireframe[2][1], wireframe[6][0], wireframe[6][1], SSD1306_WHITE);
display.drawLine( wireframe[3][0], wireframe[3][1], wireframe[7][0], wireframe[7][1], SSD1306_WHITE);
// Extra cross face on one side
display.drawLine( wireframe[1][0], wireframe[1][1], wireframe[3][0], wireframe[3][1], SSD1306_WHITE);
display.drawLine( wireframe[0][0], wireframe[0][1], wireframe[2][0], wireframe[2][1], SSD1306_WHITE);
// Write the new picture to the display
display.display();
}