#include <LiquidCrystal.h>
#include "temperature.h"
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);
//AdcSamples temperatureS0(A0, AdcSamples::BitRes::OS11);
AdcSamples temperatureS0(A0, AdcSamples::BitRes::OS16);
OverSampling overSamp(10, 16, 2);
#define P_OUTRANGE 900
#define N_OUTRANGE 120
const byte g_relayPin = 13;
int16_t g_temperature;
int16_t g_setpoint;
int16_t g_isteresi = 3 * 100;
bool checkThermostate(bool state) {
switch (state) {
case LOW:
if (g_temperature <= g_setpoint - g_isteresi) {
state = HIGH;
}
break;
case HIGH:
if (g_temperature >= g_setpoint) {
state = LOW;
}
break;
} // end switch (thermostateState)
return state;
} // end checkThermostate()
/** analog16Samples() colleziona 16 samples, 1 ogni 62ms
Somma tutti i 16 samples e divide questa per 16.
Durante il collezionamento restituisce 0, mentre
dopo avere tutti i 16 samples, calcola la media e la restituisce.
*/
uint16_t analog16Samples() {
static uint16_t somma;
static uint32_t timer62ms;
static byte nSamples;
if (millis() - timer62ms >= 62) {
timer62ms = millis();
somma += analogRead(A0); // accumula i campioni
nSamples++;
if (nSamples == 16) {
nSamples = 0;
uint16_t media = somma / 16; // calcola la media
somma = 0;
//Serial.println(media);
if ((media < N_OUTRANGE) || (media > P_OUTRANGE)) {
return 1024;
}
return media; // restituisce la media
}
}
return 0;
}
// 14-bit 16384
// 16-bit 65535
float calcTemperature(uint16_t a0) {
float average = a0;
average = 65535.001 / average - 1;
average = 10000.0 / average;
//float steinhart;
average = average / 10000.0; // (R/Ro)
average = log(average); // ln(R/Ro)
average /= 3950; // 1/B * ln(R/Ro)
average += 1.0 / (25 + 273.15); // + (1/To)
average = 1.0 / average; // Invert
average -= 273.15;
return average;
}
void setup()
{
Serial.begin(115200);
lcd.begin(16, 2);
pinMode(2, INPUT_PULLUP);
pinMode(g_relayPin, OUTPUT);
uint32_t TotalADC = 0;
Serial.println(micros()); // 13904
for (uint16_t i=0; i<4096; i++) {
TotalADC = TotalADC + analogRead(A0);
}
Serial.println(micros()); // 450412
// 450412 - 13904 = 436508 us (436 ms)
// 436508 / 4096 = 106,569us per campione alla freq di 125KHz
// una conversione ADC impiega 13 cicli ADC un ciclo
// ADC dura (1/125000) * 13 = 0,000104s (0.104ms o 104us)
// quindi la analogRead() non è poi così lenta.
Serial.println(TotalADC);
//overSamp.begin();
temperatureS0.begin();
} // end void setup()
constexpr char *onoff[] = { "OFF", "ON " };
char temperatureBuffer[7];
// struttura di supporto
struct Setpoint {
uint16_t _old;
uint16_t _new = 1024; // new != old
};
Setpoint mySetpoint;
float calcDelta(float newTemp) {
static float oldTemp = -500;
if (oldTemp == -500) {
oldTemp = newTemp;
} else {
float deltat = fabs(newTemp - oldTemp);
oldTemp = newTemp;
return deltat;
}
return oldTemp;
}
byte counterAbnormal;
uint32_t t;
bool q = true;
bool x;
void loop() {
temperatureS0.run();
if (temperatureS0.available()) {
uint32_t t = temperatureS0.read();
Serial.println(t);
Serial.println(calcTemperature(t), 4);
delay(250);
//Serial.println(calcTemperature(temperatureS0.lastMedia()));
}
#if(0)
// a0 contiene una lettura aggiornata ogni 62ms x 16 = 992ms
uint16_t a0 = analog16Samples();
// entra nella if (a0 != 0) ogni 992ms
if ((a0 > 0) && (a0 != 1024)) {
//Serial.println(millis());
//Serial.println(temperatureS0.lastMedia());
// converte a0 in tf.
float tf = calcTemperature(a0);
// converte tf nella C string temperatureBuffer
dtostrf(tf, 6, 1, temperatureBuffer);
if ((uint16_t)calcDelta(tf) > 5) {
counterAbnormal++;
}
if (counterAbnormal > 5) {
Serial.println("Check sensor!");
counterAbnormal = 0;
}
// tronca e converte tf in int16_t
g_temperature = tf * 100;
// visualizza la C string temperatureBuffer sul display
lcd.setCursor(0, 1);
lcd.print(temperatureBuffer);
// chiama la funzione termostato
bool thState = checkThermostate(digitalRead(g_relayPin));
digitalWrite(g_relayPin, thState);
// visualizza ON/OFF sul display
lcd.setCursor(10, 0);
lcd.print(onoff[thState]);
} else if (a0 == 1024) {
// c'è un problema con la sonda
lcd.setCursor(0, 1);
lcd.print("ER:S00");
bool thState = LOW;
digitalWrite(g_relayPin, thState);
lcd.setCursor(10, 0);
lcd.print(onoff[thState]);
}
// usa struttura di supporto
mySetpoint._old = analogRead(A1);
if (mySetpoint._old != mySetpoint._new) {
mySetpoint._new = mySetpoint._old;
float stpf = mySetpoint._new / 13.3;
g_setpoint = stpf * 100; // da float a uint16_t
dtostrf(stpf, 6, 1, temperatureBuffer);
lcd.setCursor(0, 0);
lcd.print(temperatureBuffer);
}
#endif
} // end void loop()
nano:12
nano:11
nano:10
nano:9
nano:8
nano:7
nano:6
nano:5
nano:4
nano:3
nano:2
nano:GND.2
nano:RESET.2
nano:0
nano:1
nano:13
nano:3.3V
nano:AREF
nano:A0
nano:A1
nano:A2
nano:A3
nano:A4
nano:A5
nano:A6
nano:A7
nano:5V
nano:RESET
nano:GND.1
nano:VIN
nano:12.2
nano:5V.2
nano:13.2
nano:11.2
nano:RESET.3
nano:GND.3
lcd:VSS
lcd:VDD
lcd:V0
lcd:RS
lcd:RW
lcd:E
lcd:D0
lcd:D1
lcd:D2
lcd:D3
lcd:D4
lcd:D5
lcd:D6
lcd:D7
lcd:A
lcd:K
r1:1
r1:2
pot2:GND
pot2:SIG
pot2:VCC
ntc1:GND
ntc1:VCC
ntc1:OUT
led1:A
led1:C
relay2:VCC
relay2:GND
relay2:IN
relay2:NC
relay2:COM
relay2:NO
btn1:1.l
btn1:2.l
btn1:1.r
btn1:2.r