#include <DHTesp.h> // DHT for ESP32 library
#include <WiFi.h> // WiFi control for ESP32
//#include <ThingsBoard.h> // ThingsBoard SDK
#include "ThingsBoard.h"
#define COUNT_OF(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
#define WIFI_AP_NAME "Wokwi-GUEST"
#define WIFI_PASSWORD ""
#define THINGSBOARD_SERVER "thingsboard.cloud"
#define THINGSBOARD_ACCESSTOKEN "G1pb2vMiQrD4pcZPVKEW"
#define SERIAL_DEBUG_BAUD 115200
#define ECHO_PIN 4
#define TRIG_PIN 2
WiFiClient espClient;
ThingsBoard tb(espClient);
int status = WL_IDLE_STATUS;
// Array with LEDs that should be lit up one by one
uint8_t leds_cycling[] = { 21, 19, 18 };
// Array with LEDs that should be controlled from ThingsBoard, one by one
uint8_t leds_control[] = { 26, 33, 25 };
bool leds_state[] = { false, false, false };
DHTesp dht;
#define DHT_PIN 15
//#define pinBuzzer 34
// Main application loop delay
int quant = 20;
// Initial period of LED cycling.
int led_delay = 1000;
// Period of sending a temperature/humidity data.
int send_delay = 2000;
// Time passed after LED was turned ON, milliseconds.
int led_passed = 0;
// Time passed after temperature/humidity data was sent, milliseconds.
int send_passed = 0;
// Set to true if application is subscribed for the RPC messages.
bool subscribed = false;
// LED number that is currenlty ON.
int current_led = 0;
float temperature = 0;
float humidity = 0;
float airMin =250; //cm
float airMax =280; //cm
float tinggiAir;
float readTinggiCM() {
digitalWrite(TRIG_PIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIG_PIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIG_PIN, LOW);
int duration = pulseIn(ECHO_PIN, HIGH);
// return duration * 0.034 / 2;
return 350 - (duration * 0.034 / 2);
}
RPC_Response processDelayChange(const RPC_Data &data)
{
Serial.println("Received the set delay RPC method");
// Process data
led_delay = data;
Serial.print("Set new delay: ");
Serial.println(led_delay);
return String(led_delay);
}
RPC_Response processGetDelay(const RPC_Data &data)
{
Serial.println("Received the get value method");
return String(led_delay);
}
RPC_Response processSetGpioState(const RPC_Data &data)
{
Serial.println("Received the set GPIO RPC method");
int pin = data["pin"];
bool enabled = data["enabled"];
if (pin < COUNT_OF(leds_control)) {
Serial.print("Setting LED ");
Serial.print(pin);
Serial.print(" to state ");
Serial.println(enabled);
leds_state[pin]=enabled; // Serial.print(" cekkkkkk ");Serial.println(leds_state[pin]);
digitalWrite(leds_control[pin], enabled);
}
return String("{\"" + String(pin) + "\": " + String(enabled?"true":"false") + "}");
}
RPC_Response processGetGpioState(const RPC_Data &data)
{
Serial.println("Received the get GPIO RPC method");
String respStr = "{";
for (size_t i = 0; i < COUNT_OF(leds_control); ++i) {
int pin = leds_control[i];
Serial.print("Getting LED ");
Serial.print(pin);
Serial.print(" state ");
bool ledState = digitalRead(pin);
Serial.println(ledState);
respStr += String("\"" + String(i) + "\": " + String(ledState?"true":"false") + ", ");
}
respStr = respStr.substring(0, respStr.length() - 2);
respStr += "}";
return respStr;
}
// RPC handlers
RPC_Callback callbacks[] = {
{ "setValue", processDelayChange },
{ "getValue", processGetDelay },
{ "setGpioStatus", processSetGpioState },
{ "getGpioStatus", processGetGpioState },
};
void setup() {
Serial.begin(SERIAL_DEBUG_BAUD);
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
InitWiFi();
// Pinconfig
for (size_t i = 0; i < COUNT_OF(leds_cycling); ++i) {
pinMode(leds_cycling[i], OUTPUT);
}
for (size_t i = 0; i < COUNT_OF(leds_control); ++i) {
pinMode(leds_control[i], OUTPUT);
}
//pinMode(pinBuzzer, OUTPUT);
// Initialize temperature sensor
dht.setup(DHT_PIN, DHTesp::DHT22);
pinMode(TRIG_PIN, OUTPUT);
pinMode(ECHO_PIN, INPUT);
}
void loop()
{
delay(quant);
led_passed += quant;
send_passed += quant;
//float tinggiAir = readTinggiCM();
//Serial.print("tinggi Air : ");Serial.println(tinggiAir);
/*
// Check if next LED should be lit up
if (led_passed > led_delay) {
// Turn off current LED
digitalWrite(leds_cycling[current_led], LOW);
led_passed = 0;
current_led = current_led >= 2 ? 0 : (current_led + 1);
// Turn on next LED in a row
digitalWrite(leds_cycling[current_led], HIGH);
}
*/
// Reconnect to WiFi, if needed
if (WiFi.status() != WL_CONNECTED) {
reconnect();
return;
}
// Reconnect to ThingsBoard, if needed
if (!tb.connected()) {
subscribed = false;
// Connect to the ThingsBoard
Serial.print("Connecting to: ");
Serial.print(THINGSBOARD_SERVER);
Serial.print(" with token ");
Serial.println(THINGSBOARD_ACCESSTOKEN);
if (!tb.connect(THINGSBOARD_SERVER, THINGSBOARD_ACCESSTOKEN)) {
Serial.println("Failed to connect");
return;
}
}
// Subscribe for RPC, if needed
if (!subscribed) {
Serial.println("Subscribing for RPC... ");
// Perform a subscription. All consequent data processing will happen in
// callbacks as denoted by callbacks[] array.
if (!tb.RPC_Subscribe(callbacks, COUNT_OF(callbacks))) {
Serial.println("Failed to subscribe for RPC");
return;
}
Serial.println("Subscribe done");
subscribed = true;
}
// Check if it is a time to send DHT22 temperature and humidity
if (send_passed > send_delay) {
Serial.println();
Serial.print("Sending data... ");
TempAndHumidity lastValues = dht.getTempAndHumidity();
float tinggiAir = readTinggiCM();
if (isnan(lastValues.humidity) || isnan(lastValues.temperature)) {
Serial.println("Failed to read from DHT sensor!");
} else {
temperature = lastValues.temperature;
Serial.print("temperature: ");Serial.print(temperature);
humidity = lastValues.humidity;
//Serial.print(" humidity: "); Serial.print(humidity);
Serial.print( " ktinggiair ");Serial.print(tinggiAir);
tb.sendTelemetryFloat("temperature", temperature);
//tb.sendTelemetryFloat("humidity", humidity);
tb.sendTelemetryFloat("ktinggiair", tinggiAir);
/*
==
if (temperature<=27 || leds_state[1]){
digitalWrite(33, HIGH);
} else if (temperature>27 && temperature<=30) {
digitalWrite(33, LOW);
digitalWrite(25, LOW);
}else{
digitalWrite(25, HIGH);
}
==
*/
if (leds_state[1]==0 && leds_state[2]==0){
//Serial.println("Mode Normal");
if (temperature>= 31){
if (tinggiAir>airMax) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
//Serial.println("Suhu tinggi, over Load, Pompa Keluar");
} else if (tinggiAir>=airMin) {
digitalWrite(25, HIGH); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
//Serial.println("Suhu tinggi, Normal Load, Pompa Keluar Masuk");
} else {
digitalWrite(25, HIGH); // Pompa Masuk
digitalWrite(33, LOW); // Pompa Keluar
//Serial.println("Suhu tinggi, rendah, Pompa Masuk");
}
} else if (temperature>= 27) {
if (tinggiAir>airMax) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
//Serial.println("Suhu Normal, over Load, Pompa Keluar");
} else if (tinggiAir>=airMin) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, LOW); // Pompa Keluar
//Serial.println("Suhu Normal, normal Load");
} else {
digitalWrite(25, HIGH); // Pompa Masuk
digitalWrite(33, LOW); // Pompa Keluar
//Serial.println("Suhu Normal, rendah, Pompa Masuk");
}
} else {
if (tinggiAir>airMax) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
//Serial.println("Suhu Rendah, over Load, Pompa Keluar");
} else if (tinggiAir>=airMin) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, LOW); // Pompa Keluar
//Serial.println("Suhu Rendah, Normal Load");
} else {
digitalWrite(25, HIGH); // Pompa Masuk
digitalWrite(33, LOW); // Pompa Keluar
//Serial.println("Suhu Rendah, Rendah, Masuk");
}
}
} else if (leds_state[1]==1 && leds_state[2]==0) { // Mode Membersihkan Kolam
//Serial.println("Mode Bersihkan Kolam");
if (tinggiAir>airMax) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
} else if (readTinggiCM()>=airMin) {
digitalWrite(25, HIGH); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
} else {
digitalWrite(25, HIGH); // Pompa Masuk
digitalWrite(33, LOW); // Pompa Keluar
}
} else if (leds_state[1]==0 && leds_state[2]==1) { // Mode Menguras Kolam
//Serial.println("Mode Menguras");
if (tinggiAir>50) {
digitalWrite(25, LOW); // Pompa masuk
digitalWrite(33, HIGH); // Pompa Keluar
} else {
digitalWrite(25, HIGH); // Pompa Masuk
digitalWrite(33, LOW); // Pompa Keluar
}
} else {
Serial.println(". . . Error . . .");
}
}
send_passed = 0;
}
tb.loop();
}
void InitWiFi()
{
Serial.println("Connecting to AP ...");
// attempt to connect to WiFi network
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Connected to AP");
}
void reconnect() {
// Loop until we're reconnected
status = WiFi.status();
if ( status != WL_CONNECTED) {
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Connected to AP");
}
}