#include <LiquidCrystal_I2C.h>
#include "RTClib.h"
#include <ESP32Servo.h>
#include "ThingsBoard.h"
#include <WiFi.h>
#define CURRENT_FIRMWARE_TITLE "TEST"
#define CURRENT_FIRMWARE_VERSION "1.0.0"
#define WIFI_AP_NAME "Wokwi-GUEST"
#define WIFI_PASSWORD ""
#define TOKEN "Qx9miPLQcXpFHxH9Hav4" //"Silahkan isi Token Listrik"
//#define THINGSBOARD_SERVER "demo.thingsboard.io"
#define THINGSBOARD_SERVER "thingsboard.cloud"
LiquidCrystal_I2C lcd(0x27, 20, 4);
RTC_DS1307 rtc;
#define NTC 34
#define Pump 14
#define heater 32
#define DOx 35
#define PH 33
#define ECHO 27
#define TRIG 12
#define Aerator 25
#define drain 26
#define feeder 13
const float BETA = 3950; // should match the Beta Coefficient of the thermistor
int status = WL_IDLE_STATUS;
WiFiClient client;
ThingsBoard tb(client);
Servo drainServo;
Servo feederServo;
//code percobaan Port PWM
const uint8_t PROGMEM gamma8[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
};
//definisi untuk Sensor o2 & PH
const float VRefer = 3.3; //Tegangan referensi untuk sensor O2
//definisi untuk Sensor PH
#define Offset 41.02740741 //deviation compensate
#define samplingInterval 20
#define printInterval 800
#define ArrayLenth 40 //times of collection
#define uart Serial
int pHArray[ArrayLenth]; //Store the average value of the sensor feedback
int pHArrayIndex = 0;
float readDistanceCM() {
digitalWrite(TRIG, LOW);
delayMicroseconds(2);
digitalWrite(TRIG, HIGH);
delayMicroseconds(10);
digitalWrite(TRIG, LOW);
int duration = pulseIn(ECHO, HIGH);
return duration * 0.034 / 2;
}
void setup() {
Serial.begin(9600);
lcd.init();
lcd.backlight();
drainServo.attach(drain);
feederServo.attach(feeder);
if (! rtc.begin()) {
Serial.println("Couldn't find RTC");
while (1);
}
rtc.adjust(DateTime(__DATE__, __TIME__));
WiFi.disconnect();
WiFi.begin("Wokwi-GUEST", "");
while ((!(WiFi.status() == WL_CONNECTED))) {
delay(300);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
analogReadResolution(10);
pinMode(NTC,INPUT);
pinMode(DOx,INPUT);
pinMode(PH,INPUT);
pinMode(Pump, OUTPUT);
pinMode(heater, OUTPUT);
pinMode(Aerator, OUTPUT);
pinMode(TRIG, OUTPUT);
pinMode(ECHO, INPUT);
lcd.setCursor(6,0);
lcd.print("PROJECT");
lcd.setCursor(5,1);
lcd.print("BUDIDAYA");
lcd.setCursor(4,2);
lcd.print("UDANG VANAME");
lcd.setCursor(3,3);
lcd.print("GROUP02 IOT3-9");
lcd.setCursor(4,0);
lcd.print("UDANG VANAME");
lcd.setCursor(0,1);
lcd.print(" ");
lcd.setCursor(0,2);
lcd.print(" ");
lcd.setCursor(0,3);
lcd.print(" ");
delay(5000);
// resolusi jadi 10 bit untuk sensor O2,PH dan NTC
analogReadResolution(10);
}
void loop() {
delay(1000);
if(WiFi.status() != WL_CONNECTED){
reconnect();
}
if(!tb.connected()) {
Serial.println("Connecting to: ");
Serial.print(THINGSBOARD_SERVER);
Serial.print(" with token ");
Serial.println(TOKEN);
if(!tb.connect(THINGSBOARD_SERVER, TOKEN)){
Serial.println("Failed to connect");
return;
}
}
int analogNTC = analogRead(NTC);
float celsius = 1 / (log(1 / (1023. / analogNTC - 1)) / BETA + 1.0 / 298.15) - 273.15;
Serial.print("Temperature: ");
Serial.print(celsius);
Serial.println(" °C");
tb.sendTelemetryFloat("Temperature", celsius );
lcd.setCursor(0,3);
lcd.print("Temperature :");
lcd.setCursor(13,3);
lcd.print(celsius);
int analogDOx = readConcentration();
Serial.print("ADC DOx: ");
Serial.println(analogDOx);
tb.sendTelemetryFloat("ADC DOx: ", analogDOx );
lcd.setCursor(0,3);
lcd.print("ADC DOx: ");
lcd.setCursor(13,3);
lcd.print(analogDOx );
int analogPH = readPH();
Serial.print("ADC PH: ");
Serial.println(analogPH);
tb.sendTelemetryFloat("ADC PH: ", analogPH );
lcd.setCursor(0,3);
lcd.print("ADC PH: ");
lcd.setCursor(13,3);
lcd.print(analogPH );
float distance = readDistanceCM();
Serial.print("Jarak: ");
Serial.println(distance);
tb.sendTelemetryFloat("jarak", distance );
lcd.setCursor(0,3);
lcd.print("Jarak : ");
lcd.setCursor(13,3);
lcd.print(distance );
if(distance >= 200){
drainServo.write(90);
feederServo.write(90);
}else{
drainServo.write(0);
feederServo.write(0);
}
// Konsentrasi 02
if(analogDOx >= 20){
drainServo.write(90);
// feederServo.write(0);
for (int i = 0; i < 255; i++) {
analogWrite(Pump, pgm_read_byte(&gamma8[i]));
analogWrite(heater, pgm_read_byte(&gamma8[i]));
analogWrite(Aerator, pgm_read_byte(&gamma8[i]));
delay(5);
}
}else{
drainServo.write(0);
// feederServo.write(0);
for (int i = 255; i > 0; i--) {
analogWrite(Pump, pgm_read_byte(&gamma8[i]));
analogWrite(heater, pgm_read_byte(&gamma8[i]));
analogWrite(Aerator, pgm_read_byte(&gamma8[i]));
delay(5);
}
}
//PH
if(analogPH>= 9){
drainServo.write(90);
// feederServo.write(0);
for (int i = 0; i < 255; i++) {
analogWrite(Pump, pgm_read_byte(&gamma8[i]));
analogWrite(heater, pgm_read_byte(&gamma8[i]));
analogWrite(Aerator, pgm_read_byte(&gamma8[i]));
delay(5);
}
}else{
drainServo.write(0);
// feederServo.write(90);
for (int i = 255; i > 0; i--) {
analogWrite(Pump, pgm_read_byte(&gamma8[i]));
analogWrite(heater, pgm_read_byte(&gamma8[i]));
analogWrite(Aerator, pgm_read_byte(&gamma8[i]));
delay(5);
}
}
for (int i = 0; i < 255; i++) {
analogWrite(Pump, pgm_read_byte(&gamma8[i]));
analogWrite(heater, pgm_read_byte(&gamma8[i]));
analogWrite(Aerator, pgm_read_byte(&gamma8[i]));
delay(5);
}
for (int i = 255; i > 0; i--) {
analogWrite(Pump, pgm_read_byte(&gamma8[i]));
analogWrite(heater, pgm_read_byte(&gamma8[i]));
analogWrite(Aerator, pgm_read_byte(&gamma8[i]));
delay(5);
}
DateTime time = rtc.now();
//Full Timestamp
Serial.println(String("DateTime::TIMESTAMP_FULL:\t")+time.timestamp(DateTime::TIMESTAMP_FULL));
//Date Only
Serial.println(String("DateTime::TIMESTAMP_DATE:\t")+time.timestamp(DateTime::TIMESTAMP_DATE));
//Full Timestamp
Serial.println(String("DateTime::TIMESTAMP_TIME:\t")+time.timestamp(DateTime::TIMESTAMP_TIME));
Serial.println("\n");
tb.loop();
}
void InitWiFi()
{
Serial.println("Connecting to AP ...");
// attempt to connect to WiFi network
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Connected to AP");
}
void reconnect() {
// Loop until we're reconnected
status = WiFi.status();
if ( status != WL_CONNECTED) {
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Connected to AP");
}
}
//https://wiki.seeedstudio.com/Grove-Gas_Sensor-O2/
float readO2Vout()
{
long sum = 0;
for(int i=0; i<32; i++)
{
sum += analogRead(DOx);
}
sum >>= 5;
float MeasuredVout = sum * (VRefer / 1023.0);
return MeasuredVout;
}
float readConcentration()
{
// Vout samples are with reference to 3.3V
float MeasuredVout = readO2Vout();
//float Concentration = FmultiMap(MeasuredVout, VoutArray,O2ConArray, 6);
//when its output voltage is 2.0V,
float Concentration = MeasuredVout * 0.21 / 2.0;
float Concentration_Percentage=Concentration*100;
return Concentration_Percentage;
}
//https://wiki.seeedstudio.com/Grove-PH-Sensor-kit/
float readPH()
{
static unsigned long samplingTime = millis();
static unsigned long printTime = millis();
static float pHValue, voltage;
if (millis() - samplingTime > samplingInterval)
{
pHArray[pHArrayIndex++] = analogRead(PH);
if (pHArrayIndex == ArrayLenth)pHArrayIndex = 0;
//voltage = avergearray(pHArray, ArrayLenth) * 5.0 / 1024;
voltage = analogRead(PH) * 3.3 / 1024;
pHValue = -19.18518519 * voltage + Offset;
samplingTime = millis();
}
return pHValue;
//if (millis() - printTime > printInterval) //Every 800 milliseconds, print a numerical, convert the state of the LED indicator
//{
// uart.print("Voltage:");
//uart.print(voltage, 2);
//
//uart.print(" pH value: ");
//uart.println(pHValue, 2);
// digitalWrite(LED, digitalRead(LED) ^ 1);
// printTime = millis();
// }
}
double avergearray(int* arr, int number) {
int i;
int max, min;
double avg;
long amount = 0;
if (number <= 0) {
Serial.println("Error number for the array to avraging!/n");
return 0;
}
if (number < 5) { //less than 5, calculated directly statistics
for (i = 0; i < number; i++) {
amount += arr[i];
}
avg = amount / number;
return avg;
} else {
if (arr[0] < arr[1]) {
min = arr[0]; max = arr[1];
}
else {
min = arr[1]; max = arr[0];
}
for (i = 2; i < number; i++) {
if (arr[i] < min) {
amount += min; //arr<min
min = arr[i];
} else {
if (arr[i] > max) {
amount += max; //arr>max
max = arr[i];
} else {
amount += arr[i]; //min<=arr<=max
}
}//if
}//for
avg = (double)amount / (number - 2);
}//if
return avg;
}