#include <DHTesp.h> // DHT for ESP32 library
#include <WiFi.h> // WiFi control for ESP32
//#include <ThingsBoard.h> // ThingsBoard SDK
#include "ThingsBoard.h"
#include <ESP32Servo.h>
#include "RTClib.h"
#define COUNT_OF(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
#define WIFI_AP_NAME "Wokwi-GUEST"
#define WIFI_PASSWORD ""
#define THINGSBOARD_SERVER "thingsboard.cloud"
#define THINGSBOARD_ACCESSTOKEN "udangSmurf"
#define SERIAL_DEBUG_BAUD 115200
WiFiClient espClient;
ThingsBoard tb(espClient);
int status = WL_IDLE_STATUS;
// Array with LEDs that should be lit up one by one
uint8_t leds_cycling[] = { 5, 18, 19 };
// Array with LEDs that should be controlled from ThingsBoard, one by one
uint8_t leds_control[] = { 26, 25, 33 };
DHTesp dht;
Servo myservo;
RTC_DS1307 rtc;
#define BUTTON 27
#define DHT_PIN 15
#define PIN_TRIG 12
#define PIN_ECHO 14
int pos = 0;
char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"};
// Main application loop delay
int quant = 20;
// Initial period of LED cycling.
int led_delay = 1000;
// Period of sending a temperature/humidity data.
int send_delay = 2000;
// Time passed after LED was turned ON, milliseconds.
int led_passed = 0;
// Time passed after temperature/humidity data was sent, milliseconds.
int send_passed = 0;
// Set to true if application is subscribed for the RPC messages.
bool subscribed = false;
// LED number that is currenlty ON.
int current_led = 0;
float temperature = 0;
float humidity = 0;
int sensorJarak = 0;
RPC_Response processDelayChange(const RPC_Data &data)
{
Serial.println("Received the set delay RPC method");
// Process data
led_delay = data;
Serial.print("Set new delay: ");
Serial.println(led_delay);
return String(led_delay);
}
RPC_Response processGetDelay(const RPC_Data &data)
{
Serial.println("Received the get value method");
return String(led_delay);
}
RPC_Response processSetGpioState(const RPC_Data &data)
{
Serial.println("Received the set GPIO RPC method");
int pin = data["pin"];
bool enabled = data["enabled"];
if (pin < COUNT_OF(leds_control)) {
Serial.print("Setting LED ");
Serial.print(pin);
Serial.print(" to state ");
Serial.println(enabled);
digitalWrite(leds_control[pin], enabled);
}
return String("{\"" + String(pin) + "\": " + String(enabled?"true":"false") + "}");
}
RPC_Response processGetGpioState(const RPC_Data &data)
{
Serial.println("Received the get GPIO RPC method");
String respStr = "{";
for (size_t i = 0; i < COUNT_OF(leds_control); ++i) {
int pin = leds_control[i];
Serial.print("Getting LED ");
Serial.print(pin);
Serial.print(" state ");
bool ledState = digitalRead(pin);
Serial.println(ledState);
respStr += String("\"" + String(i) + "\": " + String(ledState?"true":"false") + ", ");
}
respStr = respStr.substring(0, respStr.length() - 2);
respStr += "}";
return respStr;
}
// RPC handlers
RPC_Callback callbacks[] = {
{ "setValue", processDelayChange },
{ "getValue", processGetDelay },
{ "setGpioStatus", processSetGpioState },
{ "getGpioStatus", processGetGpioState },
};
//ultrasonic sensor function
float readDistanceCM() {
digitalWrite(PIN_TRIG, LOW);
delayMicroseconds(2);
digitalWrite(PIN_TRIG, HIGH);
delayMicroseconds(10);
digitalWrite(PIN_TRIG, LOW);
int duration = pulseIn(PIN_ECHO, HIGH);
return duration * 0.034 / 2;
}
int temperatureState = 0;
int hysterisis = 10;
int batasMinAir = 55;
int alarmMaxAir = 80;
int alarmMinAir = 50;
int ketinggianSensor = 120;
int ketinggianAir = 0;
int buttonState = 0;
bool tandaButton = false;
bool servoOn = false;
int count = 0;
bool red = true;
int countTemp = 0;
int stateTemp = 0;
bool waterMin = true;
bool waterMax = true;
int countWater = 0;
int stateWater = 0;
void setup() {
Serial.begin(SERIAL_DEBUG_BAUD);
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
InitWiFi();
// Pinconfig
for (size_t i = 0; i < COUNT_OF(leds_cycling); ++i) {
pinMode(leds_cycling[i], OUTPUT);
}
for (size_t i = 0; i < COUNT_OF(leds_control); ++i) {
pinMode(leds_control[i], OUTPUT);
}
// Initialize temperature sensor
dht.setup(DHT_PIN, DHTesp::DHT22);
pinMode(PIN_TRIG, OUTPUT);
pinMode(PIN_ECHO, INPUT);
pinMode(BUTTON, INPUT);
myservo.attach(4);
//rtc settings
if (! rtc.begin()) {
Serial.println("Couldn't find RTC");
Serial.flush();
abort();
}
if (! rtc.isrunning()) {
Serial.println("RTC is NOT running, let's set the time!");
// When time needs to be set on a new device, or after a power loss, the
// following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
}
void loop()
{
delay(quant);
led_passed += quant;
send_passed += quant;
DateTime now = rtc.now();
sensorJarak = readDistanceCM();
if(sensorJarak > ketinggianSensor)
{
sensorJarak = ketinggianSensor;
}
ketinggianAir = ketinggianSensor - sensorJarak;
// Check if next LED should be lit up
if (led_passed > led_delay) {
// Turn off current LED
digitalWrite(leds_cycling[current_led], LOW);
led_passed = 0;
current_led = current_led >= 2 ? 0 : (current_led + 1);
// Turn on next LED in a row
digitalWrite(leds_cycling[current_led], HIGH);
}
// Reconnect to WiFi, if needed
if (WiFi.status() != WL_CONNECTED) {
reconnect();
return;
}
// Reconnect to ThingsBoard, if needed
if (!tb.connected()) {
subscribed = false;
// Connect to the ThingsBoard
Serial.print("Connecting to: ");
Serial.print(THINGSBOARD_SERVER);
Serial.print(" with token ");
Serial.println(THINGSBOARD_ACCESSTOKEN);
if (!tb.connect(THINGSBOARD_SERVER, THINGSBOARD_ACCESSTOKEN)) {
Serial.println("Failed to connect");
return;
}
}
// Subscribe for RPC, if needed
if (!subscribed) {
Serial.println("Subscribing for RPC... ");
// Perform a subscription. All consequent data processing will happen in
// callbacks as denoted by callbacks[] array.
if (!tb.RPC_Subscribe(callbacks, COUNT_OF(callbacks))) {
Serial.println("Failed to subscribe for RPC");
return;
}
Serial.println("Subscribe done");
subscribed = true;
}
// Check if it is a time to send DHT22 temperature and humidity
if (send_passed > send_delay) {
Serial.println();
Serial.print("Sending data... ");
TempAndHumidity lastValues = dht.getTempAndHumidity();
if (isnan(lastValues.humidity) || isnan(lastValues.temperature)) {
Serial.println("Failed to read from DHT sensor!");
} else {
temperature = lastValues.temperature;
Serial.print("temperature: ");
Serial.print(temperature);
humidity = lastValues.humidity;
Serial.print(" humidity: ");
Serial.print(humidity);
Serial.print(" distance: ");
Serial.println(ketinggianAir);
Serial.print(" timestamp: ");
Serial.print(now.year(), DEC);
Serial.print('/');
Serial.print(now.month(), DEC);
Serial.print('/');
Serial.print(now.day(), DEC);
Serial.print(" (");
Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);
Serial.print(") ");
Serial.print(now.hour(), DEC);
Serial.print(':');
Serial.print(now.minute(), DEC);
Serial.print(':');
Serial.print(now.second(), DEC);
Serial.println();
tb.sendTelemetryFloat("temperature", temperature);
tb.sendTelemetryFloat("humidity", humidity);
tb.sendTelemetryFloat("distance", ketinggianAir);
}
send_passed = 0;
}
ledControl();
waterControl();
buttonControl();
tb.loop();
}
void ledControl()
{
if (temperature > 34 || temperature < 26)
{
digitalWrite(leds_control[0], HIGH);
digitalWrite(leds_control[1], LOW);
digitalWrite(leds_control[2], LOW);
if(red == true)
{
stateTemp = 1;
tb.sendTelemetryFloat("stateTemp", stateTemp);
red = false;
countTemp = 0;
}
countTemp = countTemp + 1;
if(stateTemp == 1)
{
if(countTemp > 20)
{
stateTemp = 0;
countTemp = 0;
tb.sendTelemetryFloat("stateTemp", stateTemp);
}
}
else
{
if(countTemp > 500)
{
stateTemp = 1;
countTemp = 0;
tb.sendTelemetryFloat("stateTemp", stateTemp);
}
}
}
else if((temperature >= 26 && temperature <= 27) || (temperature > 31 && temperature <= 34))
{
digitalWrite(leds_control[0], LOW);
digitalWrite(leds_control[1], LOW);
digitalWrite(leds_control[2], HIGH);
red = true;
stateTemp = 0;
tb.sendTelemetryFloat("stateTemp", stateTemp);
}
else if(temperature > 27 && temperature <= 31)
{
digitalWrite(leds_control[0], LOW);
digitalWrite(leds_control[1], HIGH);
digitalWrite(leds_control[2], LOW);
red = true;
stateTemp = 0;
tb.sendTelemetryFloat("stateTemp", stateTemp);
}
}
void waterControl()
{
if(temperature >= 32)
{
pos = 180;
myservo.write(pos);
servoOn = true;
tb.sendTelemetryString("Valve","Open");
}
else if(temperature < 32)
{
if(ketinggianAir < batasMinAir)
{
pos = 180;
myservo.write(pos);
servoOn = true;
tb.sendTelemetryString("Valve","Open");
}
else if(ketinggianAir > batasMinAir + hysterisis)
{
pos = 0;
myservo.write(pos);
servoOn = false;
tb.sendTelemetryString("Valve","Close");
}
}
if(ketinggianAir > alarmMaxAir)
{
waterMin = true;
if(waterMax == true)
{
stateWater = 1;
waterMax= false;
countWater = 0;
}
countWater = countWater + 1;
if(stateWater == 1)
{
if(countWater > 20)
{
stateWater = 0;
countWater = 0;
tb.sendTelemetryFloat("stateWater", stateWater);
}
}
else
{
if(countWater> 500)
{
stateWater = 1;
countWater = 0;
tb.sendTelemetryFloat("stateWater", stateWater);
}
}
}
else if(ketinggianAir < alarmMinAir)
{
waterMax = true;
if(waterMin == true)
{
stateWater = 2;
waterMin = false;
countWater = 0;
}
countWater = countWater + 1;
if(stateWater == 2)
{
if(countWater > 20)
{
stateWater = 0;
countWater = 0;
tb.sendTelemetryFloat("stateWater", stateWater);
}
}
else
{
if(countWater > 500)
{
stateWater = 2;
countWater = 0;
tb.sendTelemetryFloat("stateWater", stateWater);
}
}
}
else
{
stateWater = 0;
tb.sendTelemetryFloat("stateWater", stateWater);
}
}
void buttonControl()
{
if(digitalRead(BUTTON) == HIGH)
{
if(servoOn == false)
{
buttonState = 1;
}
else if(servoOn == true)
{
buttonState = 0;
}
}
if(servoOn == false)
{
while(buttonState == 1)
{
count++;
pos = 180;
myservo.write(pos);
tb.sendTelemetryString("Valve","Open");
if(count > 10)
{
pos = 0;
myservo.write(pos);
buttonState = 0;
tb.sendTelemetryString("Valve","Close");
}
delay(1000);
}
}
}
void InitWiFi()
{
Serial.println("Connecting to AP ...");
// attempt to connect to WiFi network
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Connected to AP");
}
void reconnect() {
// Loop until we're reconnected
status = WiFi.status();
if ( status != WL_CONNECTED) {
WiFi.begin(WIFI_AP_NAME, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("Connected to AP");
}
}