//---------------------RAMADAN 6 EKSEN --------1 BİRİM = 1 ADIM--------------
// 6 Axis CNC Demo Rumba - supports raprapdiscount RUMBA controller
// [email protected] 2013-10-28
// RUMBA should be treated like a MEGA 2560 Arduino.
//------------------------------------------------------------------------------
// Copyright at end of file.
// please see http://www.github.com/MarginallyClever/GcodeCNCDemo for more information.
// Code https://wokwi.com/projects/327981866411885138
// Modified from https://github.com/MarginallyClever/GcodeCNCDemo/blob/master/GcodeCNCDemo6AxisRumba/GcodeCNCDemo6AxisRumba.ino
// for Wokwi Mega with Stepper drivers
// Some Rumba pin assignments>53 modified to Mega pins
//
//------------------------------------------------------------------------------
// CONSTANTS
//------------------------------------------------------------------------------
//#define VERBOSE (1) // add to get a lot more serial output.
#define VERSION (2) // firmware version
#define BAUD (115200) // How fast is the Arduino talking?
#define MAX_BUF (64) // What is the longest message Arduino can store?
#define STEPS_PER_TURN (200) // depends on your stepper motor. most are 200.
#define MAX_FEEDRATE (1000000.0)
#define MIN_FEEDRATE (0.01)
#define NUM_AXIES (6)
// for arc directions
#define ARC_CW (1)
#define ARC_CCW (-1)
// Arcs are split into many line segments. How long are the segments?
#define MM_PER_SEGMENT (10)
//------------------------------------------------------------------------------
// STRUCTS
//------------------------------------------------------------------------------
// for line()
typedef struct {
long delta; // number of steps to move
long absdelta;
long over; // for dx/dy bresenham calculations
} Axis;
typedef struct {
int step_pin;
int dir_pin;
int enable_pin;
int limit_switch_pin;
} Motor;
//------------------------------------------------------------------------------
// GLOBALS
//------------------------------------------------------------------------------
Axis a[NUM_AXIES]; // for line()
Axis atemp; // for line()
Motor motors[NUM_AXIES];
char serialBuffer[MAX_BUF]; // where we store the message until we get a ';'
int sofar; // how much is in the buffer
// speeds
float fr=0; // human version
long step_delay; // machine version
float px,py,pz,pu,pv,pw; // position
// settings
char mode_abs=1; // absolute mode?
long line_number=0;
//------------------------------------------------------------------------------
// METHODS
//------------------------------------------------------------------------------
/**
* delay for the appropriate number of microseconds
* @input ms how many milliseconds to wait
*/
void pause(long ms) {
delay(ms/1000);
delayMicroseconds(ms%1000); // delayMicroseconds doesn't work for values > ~16k.
}
/**
* Set the feedrate (speed motors will move)
* @input nfr the new speed in steps/second
*/
void feedrate(float nfr) {
if(fr==nfr) return; // same as last time? quit now.
if(nfr>MAX_FEEDRATE || nfr<MIN_FEEDRATE) { // don't allow crazy feed rates
Serial.print(F("New feedrate must be greater than "));
Serial.print(MIN_FEEDRATE);
Serial.print(F("steps/s and less than "));
Serial.print(MAX_FEEDRATE);
Serial.println(F("steps/s."));
return;
}
step_delay = MAX_FEEDRATE/nfr;
fr=nfr;
}
/**
* Set the logical position
* @input npx new position x
* @input npy new position y
*/
void position(float npx,float npy,float npz,float npu,float npv,float npw) {
// here is a good place to add sanity tests
px=npx;
py=npy;
pz=npz;
pu=npu;
pv=npv;
pw=npw;
}
/**
* Supports movement with both styles of Motor Shield
* @input newx the destination x position
* @input newy the destination y position
**/
void onestep(int motor) {
#ifdef VERBOSE
char *letter="XYZUVW";
Serial.print(letter[motor]);
#endif
digitalWrite(motors[motor].step_pin,HIGH);
digitalWrite(motors[motor].step_pin,LOW);
}
/**
* Uses bresenham's line algorithm to move both motors
* @input newx the destination x position
* @input newy the destination y position
**/
void line(float newx,float newy,float newz,float newu,float newv,float neww) {
a[0].delta = newx-px;
a[1].delta = newy-py;
a[2].delta = newz-pz;
a[3].delta = newu-pu;
a[4].delta = newv-pv;
a[5].delta = neww-pw;
long i,j,maxsteps=0;
for(i=0;i<NUM_AXIES;++i) {
a[i].absdelta = abs(a[i].delta);
if( maxsteps < a[i].absdelta ) maxsteps = a[i].absdelta;
// set the direction once per movement
digitalWrite(motors[i].dir_pin,a[i].delta>0?HIGH:LOW);
}
for(i=0;i<NUM_AXIES;++i) {
a[i].over=maxsteps/2;
}
long dt = MAX_FEEDRATE / 5000;
long accel = 1;
long steps_to_accel = dt - step_delay;
if(steps_to_accel > maxsteps/2 )
steps_to_accel = maxsteps/2;
long steps_to_decel = maxsteps - steps_to_accel;
Serial.print("START ");
Serial.println(dt);
Serial.print("TOP ");
Serial.println(step_delay);
Serial.print("accel until ");
Serial.println(steps_to_accel);
Serial.print("decel after ");
Serial.println(steps_to_decel);
Serial.print("total ");
Serial.println(maxsteps);
#ifdef VERBOSE
Serial.println(F("Start >"));
#endif
for( i=0; i<maxsteps; ++i ) {
for(j=0;j<NUM_AXIES;++j) {
a[j].over += a[j].absdelta;
if(a[j].over >= maxsteps) {
a[j].over -= maxsteps;
digitalWrite(motors[j].step_pin,HIGH);
digitalWrite(motors[j].step_pin,LOW);
}
}
if(i<steps_to_accel) {
dt -= accel;
}
if(i>=steps_to_decel) {
dt += accel;
}
delayMicroseconds(dt);
}
#ifdef VERBOSE
Serial.println(F("< Done."));
#endif
position(newx,newy,newz,newu,newv,neww);
}
// returns angle of dy/dx as a value from 0...2PI
static float atan3(float dy,float dx) {
float a=atan2(dy,dx);
if(a<0) a=(PI*2.0)+a;
return a;
}
// This method assumes the limits have already been checked.
// This method assumes the start and end radius match.
// This method assumes arcs are not >180 degrees (PI radians)
// cx/cy - center of circle
// x/y - end position
// dir - ARC_CW or ARC_CCW to control direction of arc
static void arc(float cx,float cy,float x,float y,float dir) {
// get radius
float dx = px - cx;
float dy = py - cy;
float radius=sqrt(dx*dx+dy*dy);
// find angle of arc (sweep)
float angle1=atan3(dy,dx);
float angle2=atan3(y-cy,x-cx);
float theta=angle2-angle1;
if(dir>0 && theta<0) angle2+=2*PI;
else if(dir<0 && theta>0) angle1+=2*PI;
theta=angle2-angle1;
// get length of arc
// float circ=PI*2.0*radius;
// float len=theta*circ/(PI*2.0);
// simplifies to
float len = abs(theta) * radius;
int i, segments = ceil( len * MM_PER_SEGMENT );
float nx, ny, angle3, scale;
for(i=0;i<segments;++i) {
// interpolate around the arc
scale = ((float)i)/((float)segments);
angle3 = ( theta * scale ) + angle1;
nx = cx + cos(angle3) * radius;
ny = cy + sin(angle3) * radius;
// send it to the planner
line(nx,ny,pz,pu,pv,pw);
}
line(x,y,pz,pu,pv,pw);
}
/**
* Look for character /code/ in the buffer and read the float that immediately follows it.
* @return the value found. If nothing is found, /val/ is returned.
* @input code the character to look for.
* @input val the return value if /code/ is not found.
**/
float parseNumber(char code,float val) {
char *ptr=serialBuffer; // start at the beginning of buffer
while((long)ptr > 1 && (*ptr) && (long)ptr < (long)serialBuffer+sofar) { // walk to the end
if(*ptr==code) { // if you find code on your walk,
return atof(ptr+1); // convert the digits that follow into a float and return it
}
ptr=strchr(ptr,' ')+1; // take a step from here to the letter after the next space
}
return val; // end reached, nothing found, return default val.
}
/**
* write a string followed by a float to the serial line. Convenient for debugging.
* @input code the string.
* @input val the float.
*/
void output(char *code,float val) {
Serial.print(code);
Serial.println(val);
}
/**
* print the current position, feedrate, and absolute mode.
*/
void where() {
output("X",px);
output("Y",py);
output("Z",pz);
output("U",pu);
output("V",pv);
output("W",pw);
output("F",fr);
Serial.println(mode_abs?"ABS":"REL");
}
/**
* display helpful information
*/
void help() {
Serial.print(F("GcodeCNCDemo6AxisV2 "));
Serial.println(VERSION);
Serial.println(F("Commands:"));
Serial.println(F("G00/G01 [X/Y/Z/U/V/W(steps)] [F(feedrate)]; - linear move"));
Serial.println(F("G02 [X(steps)] [Y(steps)] [I(steps)] [J(steps)] [F(feedrate)]; - clockwise arc"));
Serial.println(F("G03 [X(steps)] [Y(steps)] [I(steps)] [J(steps)] [F(feedrate)]; - counter-clockwise arc"));
Serial.println(F("G04 P[seconds]; - delay"));
Serial.println(F("G90; - absolute mode"));
Serial.println(F("G91; - relative mode"));
Serial.println(F("G92 [X/Y/Z/U/V/W(steps)]; - change logical position"));
Serial.println(F("M18; - disable motors"));
Serial.println(F("M100; - this help message"));
Serial.println(F("M114; - report position and feedrate"));
Serial.println(F("All commands must end with a newline."));
Serial.println(F("Try G1 X100 Y200 Z300 U400 V500 W600 F1"));
}
/**
* Read the input buffer and find any recognized commands. One G or M command per line.
*/
void processCommand() {
int cmd = parseNumber('G',-1);
switch(cmd) {
case 0:
case 1: { // line
feedrate(parseNumber('F',fr));
line( parseNumber('X',(mode_abs?px:0)) + (mode_abs?0:px),
parseNumber('Y',(mode_abs?py:0)) + (mode_abs?0:py),
parseNumber('Z',(mode_abs?pz:0)) + (mode_abs?0:pz),
parseNumber('U',(mode_abs?pu:0)) + (mode_abs?0:pu),
parseNumber('V',(mode_abs?pv:0)) + (mode_abs?0:pv),
parseNumber('W',(mode_abs?pw:0)) + (mode_abs?0:pw) );
break;
}
case 2:
case 3: { // arc
feedrate(parseNumber('F',fr));
arc(parseNumber('I',(mode_abs?px:0)) + (mode_abs?0:px),
parseNumber('J',(mode_abs?py:0)) + (mode_abs?0:py),
parseNumber('X',(mode_abs?px:0)) + (mode_abs?0:px),
parseNumber('Y',(mode_abs?py:0)) + (mode_abs?0:py),
(cmd==2) ? -1 : 1);
break;
}
case 4: pause(parseNumber('P',0)*1000); break; // dwell
case 90: mode_abs=1; break; // absolute mode
case 91: mode_abs=0; break; // relative mode
case 92: // set logical position
position( parseNumber('X',0),
parseNumber('Y',0),
parseNumber('Z',0),
parseNumber('U',0),
parseNumber('V',0),
parseNumber('W',0) );
break;
default: break;
}
cmd = parseNumber('M',-1);
switch(cmd) {
case 17: motor_enable(); break;
case 18: motor_disable(); break;
case 100: help(); break;
case 114: where(); break;
default: break;
}
}
/**
* prepares the input buffer to receive a new message and tells the serial connected device it is ready for more.
*/
void ready() {
sofar=0; // clear input buffer
Serial.print(F(">")); // signal ready to receive input
}
/**
* set up the pins for each motor
*/
void motor_setup() {
motors[0].step_pin=13;
motors[0].dir_pin=12;
motors[0].enable_pin=10;
motors[0].limit_switch_pin=37;
motors[1].step_pin=11; // 54/A0 on Rumba
motors[1].dir_pin=10;
motors[1].enable_pin=10; // 55/A1 on Rumba
motors[1].limit_switch_pin=36;
motors[2].step_pin=9; // 57/A3 on Rumba
motors[2].dir_pin=8; // 56/A2 on Rumba
motors[2].enable_pin=10; // 62/A8 on Rumba
motors[2].limit_switch_pin=35;
motors[3].step_pin=7;
motors[3].dir_pin=6;
motors[3].enable_pin=10;
motors[3].limit_switch_pin=34;
motors[4].step_pin=5;
motors[4].dir_pin=4;
motors[4].enable_pin=10;
motors[4].limit_switch_pin=33;
motors[5].step_pin=3;
motors[5].dir_pin=2;
motors[5].enable_pin=10;
motors[5].limit_switch_pin=32;
int i;
for(i=0;i<NUM_AXIES;++i) {
// set the motor pin & scale
pinMode(motors[i].step_pin,OUTPUT);
pinMode(motors[i].dir_pin,OUTPUT);
pinMode(motors[i].enable_pin,OUTPUT);
}
}
void motor_enable() {
int i;
for(i=0;i<NUM_AXIES;++i) {
digitalWrite(motors[i].enable_pin,LOW);
}
}
void motor_disable() {
int i;
for(i=0;i<NUM_AXIES;++i) {
digitalWrite(motors[i].enable_pin,HIGH);
}
}
/**
* First thing this machine does on startup. Runs only once.
*/
void setup() {
Serial.begin(BAUD); // open coms
motor_setup();
motor_enable();
help(); // say hello
position(0,0,0,0,0,0); // set staring position
feedrate(1000); // set default speed
ready();
}
/**
* After setup() this machine will repeat loop() forever.
*/
void loop() {
// listen for serial commands
while(Serial.available() > 0) { // if something is available
char c=Serial.read(); // get it
Serial.print(c); // repeat it back so I know you got the message
if(sofar<MAX_BUF-1) serialBuffer[sofar++]=c; // store it
if(c=='\n') {
// entire message received
serialBuffer[sofar]=0; // end the buffer so string functions work right
Serial.print(F("\r\n")); // echo a return character for humans
processCommand(); // do something with the command
ready();
}
}
}
/**
* This file is part of GcodeCNCDemo.
*
* GcodeCNCDemo is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GcodeCNCDemo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/