// A basic everyday NeoPixel strip test program.
// NEOPIXEL BEST PRACTICES for most reliable operation:
// - Add 1000 uF CAPACITOR between NeoPixel strip's + and - connections.
// - MINIMIZE WIRING LENGTH between microcontroller board and first pixel.
// - NeoPixel strip's DATA-IN should pass through a 300-500 OHM RESISTOR.
// - AVOID connecting NeoPixels on a LIVE CIRCUIT. If you must, ALWAYS
// connect GROUND (-) first, then +, then data.
// - When using a 3.3V microcontroller with a 5V-powered NeoPixel strip,
// a LOGIC-LEVEL CONVERTER on the data line is STRONGLY RECOMMENDED.
// (Skipping these may work OK on your workbench but can fail in the field)
#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h> // Required for 16 MHz Adafruit Trinket
#endif
// Which pin on the Arduino is connected to the NeoPixels?
// On a Trinket or Gemma we suggest changing this to 1:
#define LED_PIN 6
// How many NeoPixels are attached to the Arduino?
#define LED_COUNT 60
// Declare our NeoPixel strip object:
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
// Argument 1 = Number of pixels in NeoPixel strip
// Argument 2 = Arduino pin number (most are valid)
// Argument 3 = Pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
// NEO_RGBW Pixels are wired for RGBW bitstream (NeoPixel RGBW products)
//############################################################################
// BUTTON INITIALISATION
//############################################################################
int button_switch = 2; // external interrupt pin
#define switched true // value if the button switch has been pressed
#define triggered true // controls interrupt handler
#define interrupt_trigger_type RISING // interrupt triggered on a RISING input
#define debounce 10 // time to wait in milli secs
volatile bool interrupt_process_status = {
!triggered // start with no switch press pending, ie false (!triggered)
};
bool initialisation_complete = false; // inhibit any interrupts until initialisation is complete
int state = 0;
bool isCheckState = false;
unsigned long previousMillis = 0;
unsigned long currentMillis = 0;
//
// ISR for handling interrupt triggers arising from associated button switch
//
void button_interrupt_handler()
{
if (initialisation_complete == true)
{ // all variables are initialised so we are okay to continue to process this interrupt
if (interrupt_process_status == !triggered) {
// new interrupt so okay start a new button read process -
// now need to wait for button release plus debounce period to elapse
// this will be done in the button_read function
if (digitalRead(button_switch) == HIGH) {
// button pressed, so we can start the read on/off + debounce cycle wich will
// be completed by the button_read() function.
interrupt_process_status = triggered; // keep this ISR 'quiet' until button read fully completed
}
}
}
} // end of button_interrupt_handler
bool read_button() {
int button_reading;
// static variables because we need to retain old values between function calls
static bool switching_pending = false;
static long int elapse_timer;
if (interrupt_process_status == triggered) {
// interrupt has been raised on this button so now need to complete
// the button read process, ie wait until it has been released
// and debounce time elapsed
button_reading = digitalRead(button_switch);
if (button_reading == HIGH) {
// switch is pressed, so start/restart wait for button relealse, plus end of debounce process
switching_pending = true;
elapse_timer = millis(); // start elapse timing for debounce checking
}
if (switching_pending && button_reading == LOW) {
// switch was pressed, now released, so check if debounce time elapsed
if (millis() - elapse_timer >= debounce) {
// debounce time elapsed, so switch press cycle complete
switching_pending = false; // reset for next button press interrupt cycle
interrupt_process_status = !triggered; // reopen ISR for business now button on/off/debounce cycle complete
isCheckState = true;
return switched; // advise that switch has been pressed
}
}
}
return !switched; // either no press request or debounce period not elapsed
} // end of read_button function
// setup() function -- runs once at startup --------------------------------
//############################################################################
// SETUP CODE
//############################################################################
void setup() {
Serial.begin(9600);
// These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
// Any other board, you can remove this part (but no harm leaving it):
#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
clock_prescale_set(clock_div_1);
#endif
// END of Trinket-specific code.
strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
strip.show(); // Turn OFF all pixels ASAP
strip.setBrightness(50); // Set BRIGHTNESS to about 1/5 (max = 255)
pinMode(button_switch, INPUT);
attachInterrupt(digitalPinToInterrupt(button_switch),
button_interrupt_handler,
interrupt_trigger_type);
initialisation_complete = true; // open interrupt processing for business
}
//############################################################################
// MAIN CODE
//############################################################################
// loop() function -- runs repeatedly as long as board is on ---------------
void loop() {
if (isCheckState) {
strip.clear(); // Set all pixels in RAM to 0 (off)
state = (state + 1)%4;
Serial.println(state);
isCheckState = false;
}
if(state == 0){
// Fill along the length of the strip in various colors...
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color( 0, 255, 0), 50); // Green
colorWipe(strip.Color( 0, 0, 255), 50); // Blue
}
else if(state == 1){
// Do a theater marquee effect in various colors...
theaterChase(strip.Color(127, 127, 127), 50); // White, half brightness
theaterChase(strip.Color(127, 0, 0), 50); // Red, half brightness
theaterChase(strip.Color( 0, 0, 127), 50); // Blue, half brightness
}
else if (state == 2){
rainbow(10); // Flowing rainbow cycle along the whole strip
theaterChaseRainbow(50); // Rainbow-enhanced theaterChase variant
}
else {
strip.fill(strip.Color(255, 255, 255)); // Set color of one LED
strip.show();
do{
currentMillis = millis();
if(read_button() == switched){
previousMillis = currentMillis;
Serial.println("theaterChase Exited");
return;
}
} while( currentMillis - previousMillis < 1000);
previousMillis = currentMillis;
strip.fill(strip.Color(0, 0, 0)); // Set color of one LED
strip.show();
do{
currentMillis = millis();
if(read_button() == switched){
previousMillis = currentMillis;
Serial.println("theaterChase Exited");
return;
}
} while( currentMillis - previousMillis < 1000);
previousMillis = currentMillis;
}
}
//############################################################################
// FUNCTION DEFINITIONS
//############################################################################
// Some functions of our own for creating animated effects -----------------
// Fill strip pixels one after another with a color. Strip is NOT cleared
// first; anything there will be covered pixel by pixel. Pass in color
// (as a single 'packed' 32-bit value, which you can get by calling
// strip.Color(red, green, blue) as shown in the loop() function above),
// and a delay time (in milliseconds) between pixels.
void colorWipe(uint32_t color, int wait) {
if (!isCheckState){
for(int i=0; i<strip.numPixels(); i++) { // For each pixel in strip...
strip.setPixelColor(i, color); // Set pixel's color (in RAM)
strip.show(); // Update strip to match
do{
currentMillis = millis();
if(read_button() == switched){
previousMillis = currentMillis;
Serial.println("colorWipe Exited");
return;
}
} while( currentMillis - previousMillis < wait);
previousMillis = currentMillis; // Pause for a moment
}
}
Serial.println("colorWipe Exited");
}
// Theater-marquee-style chasing lights. Pass in a color (32-bit value,
// a la strip.Color(r,g,b) as mentioned above), and a delay time (in ms)
// between frames.
void theaterChase(uint32_t color, int wait) {
if (!isCheckState){
for(int a=0; a<10; a++) { // Repeat 10 times...
for(int b=0; b<3; b++) { // 'b' counts from 0 to 2...
strip.clear(); // Set all pixels in RAM to 0 (off)
// 'c' counts up from 'b' to end of strip in steps of 3...
for(int c=b; c<strip.numPixels(); c += 3) {
strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'
}
strip.show(); // Update strip with new contents
do{
currentMillis = millis();
if(read_button() == switched){
previousMillis = currentMillis;
Serial.println("theaterChase Exited");
return;
}
} while( currentMillis - previousMillis < wait);
previousMillis = currentMillis;
}
}
}
Serial.println("theaterChase Exited");
}
// Rainbow cycle along whole strip. Pass delay time (in ms) between frames.
void rainbow(int wait) {
if (!isCheckState){
// Hue of first pixel runs 5 complete loops through the color wheel.
// Color wheel has a range of 65536 but it's OK if we roll over, so
// just count from 0 to 5*65536. Adding 256 to firstPixelHue each time
// means we'll make 5*65536/256 = 1280 passes through this outer loop:
for(long firstPixelHue = 0; firstPixelHue < 5*65536; firstPixelHue += 256) {
for(int i=0; i<strip.numPixels(); i++) { // For each pixel in strip...
// Offset pixel hue by an amount to make one full revolution of the
// color wheel (range of 65536) along the length of the strip
// (strip.numPixels() steps):
int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
// strip.ColorHSV() can take 1 or 3 arguments: a hue (0 to 65535) or
// optionally add saturation and value (brightness) (each 0 to 255).
// Here we're using just the single-argument hue variant. The result
// is passed through strip.gamma32() to provide 'truer' colors
// before assigning to each pixel:
strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
}
strip.show(); // Update strip with new contents
do{
currentMillis = millis();
if(read_button() == switched){
previousMillis = currentMillis;
Serial.println("rainbow Exited");
return;
}
} while( currentMillis - previousMillis < wait);
previousMillis = currentMillis;
}
}
Serial.println("rainbow Exited");
}
// Rainbow-enhanced theater marquee. Pass delay time (in ms) between frames.
void theaterChaseRainbow(int wait) {
if (!isCheckState){
int firstPixelHue = 0; // First pixel starts at red (hue 0)
for(int a=0; a<30; a++) { // Repeat 30 times...
for(int b=0; b<3; b++) { // 'b' counts from 0 to 2...
strip.clear(); // Set all pixels in RAM to 0 (off)
// 'c' counts up from 'b' to end of strip in increments of 3...
for(int c=b; c<strip.numPixels(); c += 3) {
// hue of pixel 'c' is offset by an amount to make one full
// revolution of the color wheel (range 65536) along the length
// of the strip (strip.numPixels() steps):
int hue = firstPixelHue + c * 65536L / strip.numPixels();
uint32_t color = strip.gamma32(strip.ColorHSV(hue)); // hue -> RGB
strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'
}
strip.show(); // Update strip with new contents
currentMillis = millis();
// Pause while also checking for interrupts.
do{
currentMillis = millis();
if(read_button() == switched){
previousMillis = currentMillis;
Serial.println("theaterChaseRainbow Exited");
return;
}
} while (currentMillis - previousMillis < wait);
previousMillis = currentMillis;
firstPixelHue += 65536 / 90; // One cycle of color wheel over 90 frames
}
}
}
Serial.println("theaterChaseRainbow Exited");
}