/*
* Implementation based on the SPONGENT implementation at
* https://sites.google.com/site/spongenthash/
*/
#include "api.h"
#include "crypto_aead.h"
#include <string.h>
#include "elephant_160.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elephant_160.h"
#include <DHT.h>
#define DHTPIN 2 // DHT PIN 2
#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
DHT dht(DHTPIN, DHTTYPE);
#if defined(SPONGENT160)
#define nBits 160
#define nSBox 20 // 8 bit
#define nRounds 80
#define lfsrIV 0x75
#elif defined(SPONGENT176)
#define nBits 176
#define nSBox 22
#define nRounds 90
#define lfsrIV 0x45
#else
#define nBits 0
#define nSBox 0
#define nRounds 0
#define lfsrIV 0
#endif
#define GET_BIT(x,y) (x >> y) & 0x1
/* Spongent eight bit S-box */
int sBoxLayer[256] = {
0xee, 0xed, 0xeb, 0xe0, 0xe2, 0xe1, 0xe4, 0xef, 0xe7, 0xea, 0xe8, 0xe5, 0xe9, 0xec, 0xe3, 0xe6,
0xde, 0xdd, 0xdb, 0xd0, 0xd2, 0xd1, 0xd4, 0xdf, 0xd7, 0xda, 0xd8, 0xd5, 0xd9, 0xdc, 0xd3, 0xd6,
0xbe, 0xbd, 0xbb, 0xb0, 0xb2, 0xb1, 0xb4, 0xbf, 0xb7, 0xba, 0xb8, 0xb5, 0xb9, 0xbc, 0xb3, 0xb6,
0x0e, 0x0d, 0x0b, 0x00, 0x02, 0x01, 0x04, 0x0f, 0x07, 0x0a, 0x08, 0x05, 0x09, 0x0c, 0x03, 0x06,
0x2e, 0x2d, 0x2b, 0x20, 0x22, 0x21, 0x24, 0x2f, 0x27, 0x2a, 0x28, 0x25, 0x29, 0x2c, 0x23, 0x26,
0x1e, 0x1d, 0x1b, 0x10, 0x12, 0x11, 0x14, 0x1f, 0x17, 0x1a, 0x18, 0x15, 0x19, 0x1c, 0x13, 0x16,
0x4e, 0x4d, 0x4b, 0x40, 0x42, 0x41, 0x44, 0x4f, 0x47, 0x4a, 0x48, 0x45, 0x49, 0x4c, 0x43, 0x46,
0xfe, 0xfd, 0xfb, 0xf0, 0xf2, 0xf1, 0xf4, 0xff, 0xf7, 0xfa, 0xf8, 0xf5, 0xf9, 0xfc, 0xf3, 0xf6,
0x7e, 0x7d, 0x7b, 0x70, 0x72, 0x71, 0x74, 0x7f, 0x77, 0x7a, 0x78, 0x75, 0x79, 0x7c, 0x73, 0x76,
0xae, 0xad, 0xab, 0xa0, 0xa2, 0xa1, 0xa4, 0xaf, 0xa7, 0xaa, 0xa8, 0xa5, 0xa9, 0xac, 0xa3, 0xa6,
0x8e, 0x8d, 0x8b, 0x80, 0x82, 0x81, 0x84, 0x8f, 0x87, 0x8a, 0x88, 0x85, 0x89, 0x8c, 0x83, 0x86,
0x5e, 0x5d, 0x5b, 0x50, 0x52, 0x51, 0x54, 0x5f, 0x57, 0x5a, 0x58, 0x55, 0x59, 0x5c, 0x53, 0x56,
0x9e, 0x9d, 0x9b, 0x90, 0x92, 0x91, 0x94, 0x9f, 0x97, 0x9a, 0x98, 0x95, 0x99, 0x9c, 0x93, 0x96,
0xce, 0xcd, 0xcb, 0xc0, 0xc2, 0xc1, 0xc4, 0xcf, 0xc7, 0xca, 0xc8, 0xc5, 0xc9, 0xcc, 0xc3, 0xc6,
0x3e, 0x3d, 0x3b, 0x30, 0x32, 0x31, 0x34, 0x3f, 0x37, 0x3a, 0x38, 0x35, 0x39, 0x3c, 0x33, 0x36,
0x6e, 0x6d, 0x6b, 0x60, 0x62, 0x61, 0x64, 0x6f, 0x67, 0x6a, 0x68, 0x65, 0x69, 0x6c, 0x63, 0x66
};
void PrintState(BYTE* state)
{
for(int i = nSBox-1; i>=0; i--)
printf("%02X ", state[i]);
printf("\n");
}
BYTE lCounter(BYTE lfsr)
{
lfsr = (lfsr << 1) | (((0x40 & lfsr) >> 6) ^ ((0x20 & lfsr) >> 5));
lfsr &= 0x7f;
return lfsr;
}
BYTE retnuoCl(BYTE lfsr)
{
return ((lfsr & 0x01) <<7) | ((lfsr & 0x02) << 5) | ((lfsr & 0x04) << 3)
| ((lfsr & 0x08) << 1) | ((lfsr & 0x10) >> 1) | ((lfsr & 0x20) >> 3)
| ((lfsr & 0x40) >> 5) | ((lfsr & 0x80) >> 7);
}
int Pi(int i)
{
if (i != nBits-1)
return (i*nBits/4)%(nBits-1);
else
return nBits-1;
}
void pLayer(BYTE* state)
{
int PermutedBitNo;
BYTE tmp[nSBox], x, y;
for(int i = 0; i < nSBox; i++) tmp[i] = 0;
for(int i = 0; i < nSBox; i++){
for(int j = 0; j < 8; j++){
x = GET_BIT(state[i],j);
PermutedBitNo = Pi(8*i+j);
y = PermutedBitNo/8;
tmp[y] ^= x << (PermutedBitNo - 8*y);
}
}
memcpy(state, tmp, nSBox);
}
void permutation(BYTE* state)
{
BYTE IV = lfsrIV;
BYTE INV_IV;
for(int i = 0; i < nRounds; i++){
#ifdef _PrintState_
printf("%3d\t", i);
PrintState(state);
#endif
/* Add counter values */
state[0] ^= IV;
INV_IV = retnuoCl(IV);
state[nSBox-1] ^= INV_IV;
IV = lCounter(IV);
/* sBoxLayer layer */
for(int j = 0; j < nSBox; j++)
state[j] = sBoxLayer[state[j]];
/* pLayer */
pLayer(state);
}
#ifdef _PrintState_
printf("%3d\t", i);
PrintState(state);
#endif
}
BYTE rotl3(BYTE b)
{
return (b << 3) | (b >> 5);
}
int constcmp(const BYTE* a, const BYTE* b, SIZE length)
{
BYTE r = 0;
for (SIZE i = 0; i < length; ++i)
r |= a[i] ^ b[i];
return r;
}
// State should be BLOCK_SIZE bytes long
// Note: input may be equal to output
void lfsr_step(BYTE* output, BYTE* input)
{
BYTE temp = rotl3(input[0]) ^ (input[3] << 7) ^ (input[13] >> 7);
for(SIZE i = 0; i < BLOCK_SIZE - 1; ++i)
output[i] = input[i + 1];
output[BLOCK_SIZE - 1] = temp;
}
void xor_block(BYTE* state, const BYTE* block, SIZE size)
{
for(SIZE i = 0; i < size; ++i)
state[i] ^= block[i];
}
// Write the ith assocated data block to "output".
// The nonce is prepended and padding is added as required.
// adlen is the length of the associated data in bytes
void get_ad_block(BYTE* output, const BYTE* ad, SIZE adlen, const BYTE* npub, SIZE i)
{
SIZE len = 0;
// First block contains nonce
// Remark: nonce may not be longer then BLOCK_SIZE
if(i == 0) {
memcpy(output, npub, CRYPTO_NPUBBYTES);
len += CRYPTO_NPUBBYTES;
}
const SIZE block_offset = i * BLOCK_SIZE - (i != 0) * CRYPTO_NPUBBYTES;
// If adlen is divisible by BLOCK_SIZE, add an additional padding block
if(i != 0 && block_offset == adlen) {
memset(output, 0x00, BLOCK_SIZE);
output[0] = 0x01;
return;
}
const SIZE r_outlen = BLOCK_SIZE - len;
const SIZE r_adlen = adlen - block_offset;
// Fill with associated data if available
if(r_outlen <= r_adlen) { // enough AD
memcpy(output + len, ad + block_offset, r_outlen);
} else { // not enough AD, need to pad
if(r_adlen > 0) // ad might be nullptr
memcpy(output + len, ad + block_offset, r_adlen);
memset(output + len + r_adlen, 0x00, r_outlen - r_adlen);
output[len + r_adlen] = 0x01;
}
}
// Return the ith ciphertext block.
// clen is the length of the ciphertext in bytes
void get_c_block(BYTE* output, const BYTE* c, SIZE clen, SIZE i)
{
const SIZE block_offset = i * BLOCK_SIZE;
// If clen is divisible by BLOCK_SIZE, add an additional padding block
if(block_offset == clen) {
memset(output, 0x00, BLOCK_SIZE);
output[0] = 0x01;
return;
}
const SIZE r_clen = clen - block_offset;
// Fill with ciphertext if available
if(BLOCK_SIZE <= r_clen) { // enough ciphertext
memcpy(output, c + block_offset, BLOCK_SIZE);
} else { // not enough ciphertext, need to pad
if(r_clen > 0) // c might be nullptr
memcpy(output, c + block_offset, r_clen);
memset(output + r_clen, 0x00, BLOCK_SIZE - r_clen);
output[r_clen] = 0x01;
}
}
// It is assumed that c is sufficiently long
// Also, tag and c should not overlap
void crypto_aead_impl(
BYTE* c, BYTE* tag, const BYTE* m, SIZE mlen, const BYTE* ad, SIZE adlen,
const BYTE* npub, const BYTE* k, int encrypt)
{
// Compute number of blocks
const SIZE nblocks_c = 1 + mlen / BLOCK_SIZE;
const SIZE nblocks_m = (mlen % BLOCK_SIZE) ? nblocks_c : nblocks_c - 1;
const SIZE nblocks_ad = 1 + (CRYPTO_NPUBBYTES + adlen) / BLOCK_SIZE;
const SIZE nb_it = (nblocks_c > nblocks_ad) ? nblocks_c : nblocks_ad + 1;
// Storage for the expanded key L
BYTE expanded_key[BLOCK_SIZE] = {0};
memcpy(expanded_key, k, CRYPTO_KEYBYTES);
permutation(expanded_key);
// Buffers for storing previous, current and next mask
BYTE mask_buffer_1[BLOCK_SIZE] = {0};
BYTE mask_buffer_2[BLOCK_SIZE] = {0};
BYTE mask_buffer_3[BLOCK_SIZE] = {0};
memcpy(mask_buffer_2, expanded_key, BLOCK_SIZE);
BYTE* previous_mask = mask_buffer_1;
BYTE* current_mask = mask_buffer_2;
BYTE* next_mask = mask_buffer_3;
// Buffer to store current ciphertext block
BYTE c_buffer[BLOCK_SIZE];
// Tag buffer and initialization of tag to zero
BYTE tag_buffer[BLOCK_SIZE] = {0};
memset(tag, 0, CRYPTO_ABYTES);
SIZE offset = 0;
for(SIZE i = 0; i < nb_it; ++i) {
// Compute mask for the next message
lfsr_step(next_mask, current_mask);
if(i < nblocks_m) {
// Compute ciphertext block
memcpy(c_buffer, npub, CRYPTO_NPUBBYTES);
memset(c_buffer + CRYPTO_NPUBBYTES, 0, BLOCK_SIZE - CRYPTO_NPUBBYTES);
xor_block(c_buffer, current_mask, BLOCK_SIZE);
permutation(c_buffer);
xor_block(c_buffer, current_mask, BLOCK_SIZE);
const SIZE r_size = (i == nblocks_m - 1) ? mlen - offset : BLOCK_SIZE;
xor_block(c_buffer, m + offset, r_size);
memcpy(c + offset, c_buffer, r_size);
}
if(i < nblocks_c) {
// Compute tag for ciphertext block
get_c_block(tag_buffer, encrypt ? c : m, mlen, i);
xor_block(tag_buffer, current_mask, BLOCK_SIZE);
xor_block(tag_buffer, next_mask, BLOCK_SIZE);
permutation(tag_buffer);
xor_block(tag_buffer, current_mask, BLOCK_SIZE);
xor_block(tag_buffer, next_mask, BLOCK_SIZE);
xor_block(tag, tag_buffer, CRYPTO_ABYTES);
}
// If there is any AD left and i > 0, compute tag for AD block
if(i > 0 && i <= nblocks_ad) {
get_ad_block(tag_buffer, ad, adlen, npub, i - 1);
xor_block(tag_buffer, previous_mask, BLOCK_SIZE);
xor_block(tag_buffer, next_mask, BLOCK_SIZE);
permutation(tag_buffer);
xor_block(tag_buffer, previous_mask, BLOCK_SIZE);
xor_block(tag_buffer, next_mask, BLOCK_SIZE);
xor_block(tag, tag_buffer, CRYPTO_ABYTES);
}
// Cyclically shift the mask buffers
// Value of next_mask will be computed in the next iteration
BYTE* const temp = previous_mask;
previous_mask = current_mask;
current_mask = next_mask;
next_mask = temp;
offset += BLOCK_SIZE;
}
}
// Remark: c must be at least mlen + CRYPTO_ABYTES long
int crypto_aead_encrypt(
unsigned char *c, unsigned long long *clen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *ad, unsigned long long adlen,
const unsigned char *nsec,
const unsigned char *npub,
const unsigned char *k)
{
(void)nsec;
*clen = mlen + CRYPTO_ABYTES;
BYTE tag[CRYPTO_ABYTES];
crypto_aead_impl(c, tag, m, mlen, ad, adlen, npub, k, 1);
memcpy(c + mlen, tag, CRYPTO_ABYTES);
return 0;
}
int crypto_aead_decrypt(
unsigned char *m, unsigned long long *mlen,
unsigned char *nsec,
const unsigned char *c, unsigned long long clen,
const unsigned char *ad, unsigned long long adlen,
const unsigned char *npub,
const unsigned char *k)
{
(void)nsec;
if(clen < CRYPTO_ABYTES)
return -1;
*mlen = clen - CRYPTO_ABYTES;
BYTE tag[CRYPTO_ABYTES];
crypto_aead_impl(m, tag, c, *mlen, ad, adlen, npub, k, 0);
return (constcmp(c + *mlen, tag, CRYPTO_ABYTES) == 0) ? 0 : -1;
}
//baru
//coding sendiri
void string2hexString(unsigned char* input, int clen, char* output)
{
int loop;
int i;
i=0;
loop=0;
for (i=0;i<clen;i+=2){
sprintf((char*)(output+i),"%02X", input[loop]);
loop+=1;
}
//insert NULL at the end of the output string
output[i++] = '\0';
}
void *hextobyte(char *hexstring, unsigned char* bytearray ) {
int i;
int str_len = strlen(hexstring);
for (i = 0; i < (str_len / 2); i++) {
sscanf(hexstring + 2*i, "%02x", &bytearray[i]);
}
}
unsigned long long clen;
unsigned long long mlen = 128; //output 160 character
unsigned char cipher[160];
unsigned char chex[160];
// String tuliskan; //variable untuk input
// const unsigned char key[32] = "12341234123412341234123412341234";
unsigned long time;
const unsigned char key[32] = {0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF};
const unsigned char nonce[24] = {0xAA,0xBB,0x00,0x00,0x00,0x00,0x01,0x11,0x11,0x11,0x11,0x11,0x01};
unsigned char plaintext[128];
unsigned long long plen;
unsigned long time1;
unsigned long time2;
unsigned long waktu;
struct enkripDataDHT22{
unsigned char h [16];
unsigned char t[16];
};
struct cipherDHT22{
unsigned char h[128+32];
unsigned char t[128+32];
unsigned long long clen_h;
unsigned long long clen_t;
};
enkripDataDHT22 dataDHT;
cipherDHT22 dataDHTenkripsi;
void setup() {
Serial.begin(9600);
Serial.println("DHT 22 Ready!");
dht.begin();
}
void loop() {
float h = dht.readHumidity(); // Ambil nilai Kelembaban
float t = dht.readTemperature(); // Ambil nilai Suhu
// char cr_suhu[13];
// char cr_kelembaban[13];
char cr_h[13];
char cr_t[13];
unsigned char ucr_h[13];
unsigned char ucr_t[13];
// double ucr_h[13];
// double ucr_t [13];
// sprintf(cr_h,2,2,ucr_h); //convert double to char
// sprintf(cr_t,2,2,ucr_t); //convert double to char
dtostrf(h,2,2,cr_h); //convert double to char
dtostrf(t,2,2,cr_t); //convert double to char
// Serial.println(cr_t);
// Serial.println(cr_h);
for(int i=0; i<sizeof(16); i++){
dataDHT.h[i] = cr_h[i];
dataDHT.t[i] = cr_t[i];
}
// Serial.print("Time awal: ");
// time1 = micros();
// Serial.println(time1); //prints time since program started
//enkripsi humidity
crypto_aead_encrypt(dataDHTenkripsi.h, &clen, dataDHT.h, mlen, 0, 0, 0, nonce, key);
dataDHTenkripsi.clen_h = clen;
//dekrip humidity
crypto_aead_decrypt(plaintext, &plen, 0, dataDHTenkripsi.h, dataDHTenkripsi.clen_h, 0, 0, nonce, key);
//enkripsi temperature
crypto_aead_encrypt(dataDHTenkripsi.t, &clen, dataDHT.t, mlen, 0, 0, 0, nonce, key);
dataDHTenkripsi.clen_t = clen;
//dekrip temperature
crypto_aead_decrypt(plaintext, &plen, 0, dataDHTenkripsi.t, dataDHTenkripsi.clen_t, 0, 0, nonce, key);
//
Serial.print("Time awal: ");
time1 = micros();
Serial.println(time1); //prints time since program started
//
string2hexString(dataDHTenkripsi.h,clen, chex);
Serial.print("Cipher Humidity: ");
Serial.println((char*)chex);
Serial.println();
//
string2hexString(dataDHTenkripsi.h,dataDHTenkripsi.clen_h,chex);
Serial.print("Plaintext Humidity: ");
Serial.println((char*) plaintext);
Serial.println();
//
string2hexString(dataDHTenkripsi.t,clen, chex);
Serial.print("Cipher Temperature: ");
Serial.println((char*)chex);
Serial.println();
//
string2hexString(dataDHTenkripsi.t,dataDHTenkripsi.clen_t,chex);
Serial.print("Plaintext Temperature: ");
Serial.println((char*) plaintext);
Serial.println();
//untuk timer end
Serial.print("Time End:");
time2 = micros();
Serial.println(time2); //prints time since program started
//untuk process time encrypt
Serial.print ("Encryption time:");
waktu = (time2) - (time1) ;
// waktu = micros;
Serial.println(waktu);
}