#include <Arduino.h>
#include <driver/adc.h>
#include <driver/dac.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
// Place your original AVR code variables and definitions here, excluding
// the ones that have been replaced by ESP32-specific definitions.
// For example, replace '#include <avr/io.h>' with '#include <Arduino.h>' and
// remove '#include <avr/interrupt.h>' since it's not necessary for ESP32.
uint16_t syncPhaseAcc;
uint16_t syncPhaseInc;
uint16_t grainPhaseAcc;
uint16_t grainPhaseInc;
uint16_t grainAmp;
uint8_t grainDecay;
uint16_t grain2PhaseAcc;
uint16_t grain2PhaseInc;
uint16_t grain2Amp;
uint8_t grain2Decay;
// Map Analogue channels
#define SYNC_CONTROL (33)
#define GRAIN_FREQ_CONTROL (32)
#define GRAIN_DECAY_CONTROL (35)
#define GRAIN2_FREQ_CONTROL (34)
#define GRAIN2_DECAY_CONTROL (27)
#define LED_WHITE_PIN 13
#define LED_GREEN_PIN 12
#define LED_RED_PIN 14
#define PWM_PIN 25
#define PWM_VALUE dac_output_voltage
// Place your original functions, mappings, and setup code here, with any necessary
// adjustments for the ESP32 (e.g., pinMode() instead of DDRx, PORTx, etc.).
// MAPPINGS - START
// Smooth logarithmic mapping
//
uint16_t antilogTable[] = {
64830,64132,63441,62757,62081,61413,60751,60097,59449,58809,58176,57549,56929,56316,55709,55109,
54515,53928,53347,52773,52204,51642,51085,50535,49991,49452,48920,48393,47871,47356,46846,46341,
45842,45348,44859,44376,43898,43425,42958,42495,42037,41584,41136,40693,40255,39821,39392,38968,
38548,38133,37722,37316,36914,36516,36123,35734,35349,34968,34591,34219,33850,33486,33125,32768
};
uint16_t mapPhaseInc(uint16_t input) {
return (antilogTable[input & 0x3f]) >> (input >> 6);
}
// Stepped chromatic mapping
//
uint16_t midiTable[] = {
0,17,18,19,20,22,23,24,26,27,29,31,32,34,36,38,41,43,46,48,51,54,58,61,65,69,73,
77,82,86,92,97,103,109,115,122,129,137,145,154,163,173,183,194,206,218,231,
244,259,274,291,308,326,346,366,388,411,435,461,489,518,549,581,616,652,691,
732,776,822,871,923,978,1036,1097,1163,1232,1305,1383,1465,1552,1644,1742,
1845,1955,2071,2195,2325,2463,2610,2765,2930,3104,3288,3484,3691,3910,4143,
4389,4650,4927,5220,5530,5859,6207,6577,6968,7382,7821,8286,8779,9301,9854,
10440,11060,11718,12415,13153,13935,14764,15642,16572,17557,18601,19708,20879,
22121,23436,24830,26306,27871
};
uint16_t mapMidi(uint16_t input) {
return (midiTable[(1023-input) >> 3]);
}
//// Stepped Pentatonic mapping
//
uint16_t pentatonicTable[54] = {
0,19,22,26,29,32,38,43,51,58,65,77,86,103,115,129,154,173,206,231,259,308,346,
411,461,518,616,691,822,923,1036,1232,1383,1644,1845,2071,2463,2765,3288,
3691,4143,4927,5530,6577,7382,8286,9854,11060,13153,14764,16572,19708,22121,26306
};
uint16_t mapPentatonic(uint16_t input) {
uint8_t value = (1023-input) / (1024/53);
return (pentatonicTable[value]);
}
// Lewis added - I've got an Excel spreadsheet with these workings out on my blog...
// Stepped major Diatonic mapping
//
uint16_t majordiatonicTable[76] = {
0,17,19,22,23,26,29,32,34,38,43,46,51,58,65,69,77,86,92,103,115,129,137,154,173,183,206,231,259,274,308,346,366,
411,461,518,549,616,691,732,822,923,1036,1097,1232,1383,1465,1644,1845,2071,2195,2463,2765,2930,3288,
3691,4143,4389,4927,5530,5859,6577,7382,8286,8779,9854,11060,11718,13153,14764,16572,17557,19708,22121,23436,26306
};
uint16_t mapmajorDiatonic(uint16_t input) {
uint8_t value = (1023-input) / (1024/53);
return (majordiatonicTable[value]);
}
// Stepped minor Diatonic mapping
//
uint16_t minordiatonicTable[76] = {
0,17,19,20,23,26,27,31,34,38,41,46,51,54,61,69,77,82,92,103,109,122,137,154,163,183,206,218,244,274,308,326,366,
411,435,489,549,616,652,732,822,871,978,1097,1232,1305,1465,1644,1742,1955,2195,2463,2610,2930,3288,
3484,3910,4389,4927,5220,5859,6577,6968,7821,8779,9854,10440,11718,13153,13935,15642,17557,19708,20879,23436,26306
};
uint16_t mapminorDiatonic(uint16_t input) {
uint8_t value = (1023-input) / (1024/53);
return (minordiatonicTable[value]);
}
// Stepped major Pentatonic mapping
//
uint16_t majorpentatonicTable[55] = {
0,17,19,22,26,29,34,38,43,51,58,69,77,86,103,115,137,154,173,206,231,274,308,346,
411,461,549,616,691,822,923,1097,1232,1383,1644,1845,2195,2463,2765,3288,
3691,4389,4927,5530,6577,7382,8779,9854,11060,13153,14764,17557,19708,22121,26306
};
uint16_t mapmajorPentatonic(uint16_t input) {
uint8_t value = (1023-input) / (1024/53);
return (majorpentatonicTable[value]);
}
// Stepped minor Pentatonic mapping
//
uint16_t minorpentatonicTable[55] = {
0,17,20,23,26,31,34,41,46,51,61,69,82,92,103,122,137,163,183,206,244,274,326,366,
411,489,549,652,732,822,978,1097,1305,1465,1644,1955,2195,2610,2930,3288,
3910,4389,5220,5859,6577,7821,8779,10440,11718,13153,15642,17557,20879,23436,26306
};
uint16_t mapminorPentatonic(uint16_t input) {
uint8_t value = (1023-input) / (1024/53);
return (pentatonicTable[value]);
}
// MAPPINGS - END
// Task for audio processing
void audioTask(void *parameter) {
for (;;) {
// Place your original loop() code here, replacing any AVR-specific code with
// its ESP32 equivalent (e.g., replacing 'OCR2B' with 'PWM_VALUE(DAC_CHANNEL_1, value)').
// To handle multitasking, add a small delay at the end of the loop.
vTaskDelay(pdMS_TO_TICKS(1));
}
}
void setup() {
// Set up ADC and DAC
adc1_config_width(ADC_WIDTH_BIT_10);
adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_11);
adc1_config_channel_atten(ADC1_CHANNEL_1, ADC_ATTEN_DB_11);
adc1_config_channel_atten(ADC1_CHANNEL_2, ADC_ATTEN_DB_11);
adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_11);
adc1_config_channel_atten(ADC1_CHANNEL_4, ADC_ATTEN_DB_11);
dac_output_enable(DAC_CHANNEL_1);
// Set up pins
pinMode(LED_WHITE_PIN, OUTPUT);
pinMode(PWM_PIN, OUTPUT);
// Set up your other peripherals and components as needed.
pinMode(LED_RED_PIN, OUTPUT);
digitalWrite(LED_RED_PIN, HIGH);
// Create the audio task
xTaskCreatePinnedToCore(audioTask, "Audio Task", 4096, NULL, 1, NULL, 0);
digitalWrite(LED_RED_PIN, LOW);
}
void loop() {
// The loop can remain empty or be used for other tasks unrelated to audio processing.
}