#define ntc_pin 4 // Pin, to which the voltage divider is connected
#define vd_power_pin 2 // 3.3V for the voltage divider
#define nominal_resistance 10000 //Nominal resistance at 25⁰C
#define nominal_temeprature 25 // temperature for nominal resistance (almost always 25⁰ C)
#define samplingrate 5 // Number of samples
#define beta 3950 // The beta coefficient or the B value of the thermistor (usually 3000-4000) check the datasheet for the accurate value.
#define Rref 10000 //Value of resistor used for the voltage divider
#define led_channel 0 // channel that controls PWM signal for analog write purpose
int samples = 0; //variable to store the samples
void setup() {
// configure LED PWM functionalitites
ledcSetup(led_channel, 5000, 8); //led_channel, frequency, width
// attach the channel to the GPIO to be controlled
ledcAttachPin(vd_power_pin, led_channel); //pin, led_channel
Serial.begin(9600); //initialize serial communication at a baud rate of 9600
}
void loop() {
uint8_t i;
float average;
float ntc_res;
samples = 0;
// take voltage readings from the voltage divider
ledcWrite(led_channel, 255); //width is 8, so max duty cycle is 255. Practically, turns on.
for (i = 0; i < samplingrate; i++) {
samples += analogRead(ntc_pin);
delay(10);
}
ledcWrite(led_channel, 0); //Practically, turns off.
average = 0;
average = samples / samplingrate;
Serial.print("ADC readings ");
Serial.println(average);
// Calculate NTC resistance - implement voltage divider and extract ntc_res
ntc_res = 0;
ntc_res = (Rref * average) / (4095 - average); //4095 for esp32, 1023 for arduino
Serial.print("Thermistor resistance ");
Serial.println(ntc_res);
float temperature;
temperature = ntc_res / nominal_resistance; // (R/Ro)
temperature = log(temperature); // ln(R/Ro)
temperature /= beta; // 1/B * ln(R/Ro)
temperature += 1.0 / (nominal_temeprature + 273.15); // + (1/To)
temperature = 1.0 / temperature; // Invert
temperature -= 273.15; // convert absolute temp to C
Serial.print("Temperature ");
Serial.print(temperature);
Serial.println(" *C");
delay(1000);
}