#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,20,4);
float cm;
float inches;
long readUltrasonicDistance(int triggerPin, int echoPin)
{
pinMode(triggerPin, OUTPUT); // Clear the trigger
digitalWrite(triggerPin, LOW);
delayMicroseconds(2);
// Sets the trigger pin to HIGH state for 10 microseconds
digitalWrite(triggerPin, HIGH);
delayMicroseconds(10);
digitalWrite(triggerPin, LOW);
pinMode(echoPin, INPUT);
// Reads the echo pin, and returns
// the sound wave travel time in microseconds
return pulseIn(echoPin, HIGH);
}
int datapin = 2;
int clockpin = 3;
int latchpin = 4;
// We'll also declare a global variable for the data we're
// sending to the shift register:
byte data = 0;
void setup()
{
// Set the three SPI pins to be outputs:
pinMode(datapin, OUTPUT);
pinMode(clockpin, OUTPUT);
pinMode(latchpin, OUTPUT);
Serial.begin(9600);
lcd.init(); // initialize the lcd
// Print a message to the LCD.
lcd.backlight();
lcd.print("--> Distance <--");
delay(3000);
lcd.clear();
}
void loop()
{
// To try the different functions below, uncomment the one
// you want to run, and comment out the remaining ones to
// disable them from running.
oneAfterAnother(); // All on, all off
// oneOnAtATime(); // Scroll down the line
// pingPong(); // Like above, but back and forth
// randomLED(); // Blink random LEDs
// marquee();
// binaryCount(); // Bit patterns from 0 to 255
}
void shiftWrite(int desiredPin, boolean desiredState){
// This function lets you make the shift register outputs
// HIGH or LOW in exactly the same way that you use digitalWrite().
bitWrite(data,desiredPin,desiredState); //Change desired bit to 0 or 1 in "data"
// Now we'll actually send that data to the shift register.
// The shiftOut() function does all the hard work of
// manipulating the data and clock pins to move the data
// into the shift register:
shiftOut(datapin, clockpin, MSBFIRST, data); //Send "data" to the shift register
//Toggle the latchPin to make "data" appear at the outputs
digitalWrite(latchpin, HIGH);
digitalWrite(latchpin, LOW);
cm = 0.0344/2 * readUltrasonicDistance(3, 2);
inches = (cm / 2.54);
/*
Serial.print("Inches ");
Serial.print(inches, 1);
Serial.print("\t");
Serial.print("cm ");
Serial.println(cm, 1);
*/
lcd.setCursor(0,0);
lcd.print("Inches");
lcd.setCursor(4,0);
lcd.setCursor(12,0);
lcd.print("cm");
lcd.setCursor(1,1);
lcd.print(inches, 1);
lcd.setCursor(11,1);
lcd.print(cm, 1);
lcd.setCursor(14,1);
delay(2000);
lcd.clear();
}
void oneAfterAnother()
{
// This function will turn on all the LEDs, one-by-one,
// and then turn them off all off, one-by-one.
int index;
int delayTime = 100; // Time (milliseconds) to pause between LEDs
// Make this smaller for faster switching
// Turn all the LEDs on
for(index = 0; index <= 7; index++)
{
shiftWrite(index, HIGH);
delay(delayTime);
}
// Turn all the LEDs off
for(index = 7; index >= 0; index--)
{
shiftWrite(index, LOW);
delay(delayTime);
}
}
void oneOnAtATime()
{
// This function will turn the LEDs on and off, one-by-one.
int index;
int delayTime = 100; // Time (milliseconds) to pause between LEDs
// Make this smaller for faster switching
// step through the LEDs, from 0 to 7
for(index = 0; index <= 7; index++)
{
shiftWrite(index, HIGH); // turn LED on
delay(delayTime); // pause to slow down the sequence
shiftWrite(index, LOW); // turn LED off
}
}
void pingPong()
{
// This function turns on the LEDs, one at a time, in both directions.
int index;
int delayTime = 100; // time (milliseconds) to pause between LEDs
// make this smaller for faster switching
// step through the LEDs, from 0 to 7
for(index = 0; index <= 7; index++)
{
shiftWrite(index, HIGH); // turn LED on
delay(delayTime); // pause to slow down the sequence
shiftWrite(index, LOW); // turn LED off
}
// step through the LEDs, from 7 to 0
for(index = 7; index >= 0; index--)
{
shiftWrite(index, HIGH); // turn LED on
delay(delayTime); // pause to slow down the sequence
shiftWrite(index, LOW); // turn LED off
}
}
void randomLED()
{
// This function will randomly turn on and off LEDs.
int index;
int delayTime = 100; // time (milliseconds) to pause between LEDs
// make this smaller for faster switching
index = random(8); // pick a random number between 0 and 7
shiftWrite(index, HIGH); // turn LED on
delay(delayTime); // pause to slow down the sequence
shiftWrite(index, LOW); // turn LED off
}
void marquee()
{
// This function will mimic "chase lights" like those around signs.
int index;
int delayTime = 200; // Time (milliseconds) to pause between LEDs
// Make this smaller for faster switching
// Step through the first four LEDs
// (We'll light up one in the lower 4 and one in the upper 4)
for(index = 0; index <= 3; index++)
{
shiftWrite(index, HIGH); // Turn a LED on
shiftWrite(index+4, HIGH); // Skip four, and turn that LED on
delay(delayTime); // Pause to slow down the sequence
shiftWrite(index, LOW); // Turn both LEDs off
shiftWrite(index+4, LOW);
}
}
void binaryCount()
{
// This function creates a visual representation of the on/off pattern
// of bits in a byte.
int delayTime = 1000; // time (milliseconds) to pause between LEDs
// make this smaller for faster switching
// Send the data byte to the shift register:
shiftOut(datapin, clockpin, MSBFIRST, data);
// Toggle the latch pin to make the data appear at the outputs:
digitalWrite(latchpin, HIGH);
digitalWrite(latchpin, LOW);
// Add one to data, and repeat!
// (Because a byte type can only store numbers from 0 to 255,
// if we add more than that, it will "roll around" back to 0
// and start over).
data++;
// Delay so you can see what's going on:
delay(delayTime);
}