#include <FastLED.h>
// How many leds in your strip?
#define NUM_LEDS 48
// For led chips like WS2812, which have a data line, ground, and power, you just
// need to define DATA_PIN. For led chipsets that are SPI based (four wires - data, clock,
// ground, and power), like the LPD8806 define both DATA_PIN and CLOCK_PIN
// Clock pin only needed for SPI based chipsets when not using hardware SPI
#define DATA_PIN 5
#define button1 13
#define CLOCK_PIN 13
// Define the array of leds
CRGB leds[NUM_LEDS];
void setup() {
// Uncomment/edit one of the following lines for your leds arrangement.
// ## Clockless types ##
FastLED.addLeds<NEOPIXEL, DATA_PIN>(leds, NUM_LEDS); // GRB ordering is assumed
// FastLED.addLeds<SM16703, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<TM1829, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<TM1812, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<TM1809, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<TM1804, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<TM1803, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<UCS1903, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<UCS1903B, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<UCS1904, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<UCS2903, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<WS2812, DATA_PIN, RGB>(leds, NUM_LEDS); // GRB ordering is typical
// FastLED.addLeds<WS2852, DATA_PIN, RGB>(leds, NUM_LEDS); // GRB ordering is typical
// FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS); // GRB ordering is typical
// FastLED.addLeds<GS1903, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<SK6812, DATA_PIN, RGB>(leds, NUM_LEDS); // GRB ordering is typical
// FastLED.addLeds<SK6822, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<APA106, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<PL9823, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<SK6822, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<WS2811, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<WS2813, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<APA104, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<WS2811_400, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<GE8822, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<GW6205, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<GW6205_400, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<LPD1886, DATA_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<LPD1886_8BIT, DATA_PIN, RGB>(leds, NUM_LEDS);
// ## Clocked (SPI) types ##
// FastLED.addLeds<LPD6803, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS); // GRB ordering is typical
// FastLED.addLeds<LPD8806, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS); // GRB ordering is typical
// FastLED.addLeds<WS2801, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<WS2803, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<SM16716, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS);
// FastLED.addLeds<P9813, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS); // BGR ordering is typical
// FastLED.addLeds<DOTSTAR, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS); // BGR ordering is typical
// FastLED.addLeds<APA102, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS); // BGR ordering is typical
// FastLED.addLeds<SK9822, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS); // BGR ordering is typical
pinMode(button1, INPUT);
}
int bight = 230;
int millisDelay = 10000;
unsigned long myTime = 0;
void loop() {
/*if (myTime < millis()) {
myTime = millis() + millisDelay;
mainLED();
}
*/
if (digitalRead(button1) == HIGH){
// Declare a variable to store the input angle
int i;
for (i=0; i<NUM_LEDS;i++){
leds[i] = CRGB::Black;
}
while(digitalRead(button1) == HIGH){
// ================= GO! ===================
for (i=0; i<NUM_LEDS;i++){
leds[i] = CRGB::Blue;
int j;
for (j=1; j<11;j++){
if (!((i - j) < 0)){
if (j == 10) {
leds[i-j] = CRGB::Black;
} else {
leds[i-j].fadeLightBy(35);
}
}
}
FastLED.show();
delay(20);
}
// ===================== BACK! ===================
for (i=0; i<NUM_LEDS;i++){
leds[(NUM_LEDS-1)-i] = CRGB::Blue;
int j;
for (j=1; j<11;j++){
if (!((((NUM_LEDS-1)-i)+j) > (NUM_LEDS-1))){
if (j == 10) {
leds[(((NUM_LEDS-1)-i)+j)] = CRGB::Black;
} else {
leds[(((NUM_LEDS-1)-i)+j)].fadeLightBy(35);
}
}
}
FastLED.show();
delay(20);
}
};
}
}
void mainLED(){
// Turn the LED on, then pause
int i;
for (i=0;i<NUM_LEDS;i++){
// Declare a variable to store the RGB value
int* rgbValue;
// Call the function and assign the result to the variable
rgbValue = randomRGB();
leds[i] = CRGB(rgbValue[0], rgbValue[1], rgbValue[2]);
// Free the memory allocated by the function
free(rgbValue);
}
FastLED.show();
}
// =======================================================
// ============ RANDON GENERATED RGB VALUES ==============
// =======================================================
// This function returns a random RGB value as an array of three integers
int* randomRGB() {
// Create an array to store the RGB value
int* rgb = (int*) malloc(3 * sizeof(int));
// Generate a random number between 0 and 255 for each color component
rgb[0] = random(0, 256); // Red
rgb[1] = random(0, 256); // Green
rgb[2] = random(0, 256); // Blue
// Return the RGB value
return rgb;
}
// =======================================================
// ============ BLUR FUNCTION ==============
// =======================================================
void Test_BLUR() {
// Turn the LED on, then pause
int i;
for (i=0;i<NUM_LEDS;i++){
// Declare a variable to store the RGB value
int* rgbValue;
// Call the function and assign the result to the variable
rgbValue = randomRGB();
leds[i] = CRGB(rgbValue[0], rgbValue[1], rgbValue[2]);
// Free the memory allocated by the function
free(rgbValue);
}
FastLED.show();
delay(10000);
// Now turn the LED off, then pause
//for (i=0;i<NUM_LEDS;i++){
// leds[i] = CRGB::Black;
//}
blur1d (leds, NUM_LEDS, 172);
FastLED.show();
delay(20000);
}
// =======================================================
// ============ LOOP COPY TO GO BACK TO ==============
// =======================================================
/*
void loop() {
// Turn the LED on, then pause
int i;
for (i=0;i<NUM_LEDS;i++){
// Declare a variable to store the RGB value
int* rgbValue;
// Call the function and assign the result to the variable
rgbValue = randomRGB();
leds[i] = CRGB(rgbValue[0], rgbValue[1], rgbValue[2]);
// Free the memory allocated by the function
free(rgbValue);
}
FastLED.show();
delay(2000);
fade_video (leds, NUM_LEDS, 150);
FastLED.show();
delay(2000);
}
*/