#include "stm32c0xx_hal.h"
#include <stdio.h>
#include <string.h> 
#include <math.h>
ADC_HandleTypeDef hadc1;
UART_HandleTypeDef huart2;
const float BETA = 3950.0; // Beta Coefficient of the thermistor
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
void Error_Handler(void);
int main(void) 
{
  HAL_Init();
  // Configure the system clock
  SystemClock_Config();
  //HAL_ADC_GetValue();
  // Initialize peripherals
  MX_GPIO_Init();
  MX_ADC1_Init();
  MX_USART2_UART_Init();
  char buffer[50];
  uint16_t adcValue;
  float temperatureC = 0;
  while (1) 
  {
    // Start an ADC conversion
    if (HAL_ADC_Start(&hadc1) != HAL_OK) 
    {
      Error_Handler();
      //printf("Fail1");
    }
    // Wait for the conversion to complete
    if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) != HAL_OK) {
      Error_Handler();
      //printf("Fail2");
    }
    // Read the ADC value
    adcValue = HAL_ADC_GetValue(&hadc1);
    // Calculate temperature in degrees Celsius
    temperatureC = 1.0 / (log(1 / (1023.0 / adcValue - 1.0)) / BETA + 1.0 / 298.15) - 273.15;
    // Format and send the temperature over UART
    //printf("%.2f\r\n",temperatureC);
    snprintf(buffer, sizeof(buffer), "Temperature: %.2f ℃\r\n", temperatureC);
    HAL_UART_Transmit(&huart2, (uint8_t *)buffer, strlen(buffer), HAL_MAX_DELAY);
    HAL_Delay(1000); // Delay for 1 second between readings
  }
}
void SystemClock_Config(void) 
{
  // Configure the system clock as needed
  // This depends on your specific STM32 Nucleo model
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
                                | RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }

}
static void MX_GPIO_Init(void) 
{
  // Initialize GPIO pins as needed
   __HAL_RCC_GPIOA_CLK_ENABLE();
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  GPIO_InitStruct.Pin = GPIO_PIN_5;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}
static void MX_ADC1_Init(void) 
{
 // Initialize ADC for NTC sensor reading
  ADC_ChannelConfTypeDef sConfig = {0};
  // Enable ADC peripheral clock
  //__HAL_RCC_ADC1_CLK_ENABLE();
  // Initialize ADC handle
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK) {
    // Initialization Error
    Error_Handler();
  }
  // Configure ADC channel
  sConfig.Channel = ADC_CHANNEL_0; // Modify this for your specific channel
  //sConfig.Rank = 1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
 // sConfig.SamplingTime = ADC_SAMPLETIME_16CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
    // Channel Configuration Error
    Error_Handler();
  }
  if (HAL_ADC_Start(&hadc1) != HAL_OK) {
  Error_Handler();
}
if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) != HAL_OK) {
  Error_Handler();
}

}
static void MX_USART2_UART_Init(void) 
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  __HAL_RCC_GPIOA_CLK_ENABLE();
  // PA2     ------> USART2_TX
  // PA3     ------> USART2_RX
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.Alternate = GPIO_AF1_USART2;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
}
void Error_Handler(void) 
{
  // Handle error condition (e.g., LED blinking, error message)
  while (1) {
    // Handle the error as needed
    while (1) 
    {
        HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // Toggle the LED rapidly to indicate an error
        HAL_Delay(100);
        }
  }
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line) {
  // Custom assert function (optional)
  // Handle assert failure here
}
#define STDOUT_FILENO   1
#define STDERR_FILENO   2

int _write(int file, uint8_t *ptr, int len)
{
  switch (file)
  {
    case STDOUT_FILENO:
      HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
      break;
    case STDERR_FILENO:
      HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
      break;
    default:
      return -1;
  }
  return len;
}

#endif