// File : Cascade165.ino
//
// Version 1, 5 August 2021, by Koepel
// Initial version.
// Version 2, 5 August 2021, by Koepel
// Layout of the wiring made better.
// Version 3, 13 August 2021, by Koepel
// Changed 'SCK' to 'clockPin'.
//
// Cascade of four 74HC165 shift-in registers.
// Only three pins are used on the Arduino board, to read 32 switches.
//
// Using the 74HC165 is safe, because a pulse to the Latch pin
// ('PL' on the 74HC165) will make a new start every time.
// In case of an error or a wrong clock pulse by noise,
// it synchronizes the data when inputs are read the next time.
//
// Based on:
// (1)
// Demo sketch to read from a 74HC165 input shift register
// by Nick Gammon, https://www.gammon.com.au/forum/?id=11979
// (2)
// 74HC165 Shift register input example
// by Uri Shaked, https://wokwi.com/arduino/projects/306031380875182657
//
//
#include <shiftRegister4094SevenSeg.h>
// 7-segments LED uses HC4094, NOT HC595
// 16ch mux common pin
#define MUXCOM A4
//
// buttons
const byte latchPin = 11; // to latch the inputs into the registers
const byte clockPin = 13; // I choose the SCK pin
const byte dataPin = 12; // I choose the MISO pin
uint32_t oldOptionSwitch = 0; // previous state of all the inputs
const int pulseWidth = 10; // pulse width in microseconds def 10
// 16ch mux
const uint8_t controlPins[] = { 14, 15, 16, 17 }; // A0, A1, A2, A3
uint32_t readMux(int channel)
{
for(int i = 0; i < 4; i ++)
{
digitalWrite(controlPins[i], channel >> i & 1);
}
delay(10);
return analogRead(MUXCOM);
}
//
// encoder
#define ENCODER_CLK 3
#define ENCODER_DT 2
//
// leds
//const byte clockPinLed = 7;
//const byte latchPinLed = 6;
const byte dataPinLed = 5; // 7-segments
shiftRegister4094SevenSeg display(ANODE, 2);
void setup ()
{
Serial.begin( 115200);
Serial.println( "Turn on and off the switches");
Serial.println( "Top row is switch 0 (right) to switch 7 (left)");
Serial.println( "Second row is 8 to 15, and so on");
pinMode( clockPin, OUTPUT); // clock signal, idle LOW
pinMode( latchPin, OUTPUT); // latch (copy input into registers), idle HIGH
digitalWrite( latchPin, HIGH);
// 16ch mux
for (int i = 0; i < 4; ++i)
{
pinMode(controlPins[i], OUTPUT);
}
//
// encoder
pinMode(ENCODER_CLK, INPUT);
pinMode(ENCODER_DT, INPUT);
//
// leds
pinMode( dataPinLed, OUTPUT);
display.begin(dataPinLed, clockPin, latchPin);
display.print("HI");
//
}
//Setup END
// enc
int lastClk = HIGH;
void loop ()
{
// Give a pulse to the parallel load latch of all 74HC165
digitalWrite( latchPin, LOW);
delayMicroseconds( pulseWidth);
digitalWrite( latchPin, HIGH);
// Reading one 74HC165 at a time and combining them into a 32 bit variable
// The last 74HC165 is at the bottom, but the switches start numbering
// at the top. So the first byte has to be shifted into the highest place.
uint32_t optionSwitch = 0;
for( int i=24; i>=0; i-=8)
{
optionSwitch |= ((uint32_t) ReadOne165()) << i;
}
for( int i = 0; i<32; i++)
{
if( bitRead( optionSwitch, i) != bitRead( oldOptionSwitch,i))
{
Serial.print( "Switch ");
if( i < 10)
Serial.print( " ");
Serial.print( i);
Serial.print( " is now ");
Serial.println( bitRead( optionSwitch, i) == 0 ? "down ↓" : "up ↑");
}
}
oldOptionSwitch = optionSwitch;
delay( 25); // slow down the sketch to avoid switch bounce
// 16ch mux only 12 used
for(int i = 0; i < 12; ++i)
{
// if (readMux(i) > 0)
{
Serial.print(readMux(i));
Serial.print( " ");
}
}
Serial.println();
//
// encoder
int newClk = digitalRead(ENCODER_CLK);
if (newClk != lastClk) {
// There was a change on the CLK pin
lastClk = newClk;
int dtValue = digitalRead(ENCODER_DT);
if (newClk == LOW && dtValue == HIGH) {
Serial.println("Rotated clockwise ⏩");
}
if (newClk == LOW && dtValue == LOW) {
Serial.println("Rotated counterclockwise ⏪");
}
}
}
// Loop END
// The ReadOne165() function reads only 8 bits,
// because of the similar functions shiftIn() and SPI.transfer()
// which both use 8 bits.
//
// The shiftIn() can not be used here, because the clock is set idle low
// and the shiftIn() makes the clock high to read a bit.
// The 74HC165 require to read the bit first and then give a clock pulse.
//
byte ReadOne165()
{
byte ret = 0x00;
// The first one that is read is the highest bit (input D7 of the 74HC165).
for( int i=7; i>=0; i--)
{
if( digitalRead( dataPin) == HIGH)
bitSet( ret, i);
digitalWrite( clockPin, HIGH);
delayMicroseconds( pulseWidth);
digitalWrite( clockPin, LOW);
}
return( ret);
}