// STM32 Nucleo-L031K6 HAL Blink + printf() example
// Simulation: https://wokwi.com/projects/367244067477216257
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stm32l0xx_hal.h>
// ST Nucleo Green user LED (PB3)
#define LED_PORT GPIOB
#define LED_3_PIN GPIO_PIN_3
#define LED_GREEN_PIN GPIO_PIN_6
#define LED_RED_PIN GPIO_PIN_5
#define LED_BLUE_PIN GPIO_PIN_4
#define LED_PORT_CLK_ENABLE __HAL_RCC_GPIOB_CLK_ENABLE
#define VCP_TX_Pin GPIO_PIN_2
#define VCP_RX_Pin GPIO_PIN_15
#define SUCCESS 0
#define FAIL 1
#define REPEAT 2
#define POOL_SIZE 5
typedef int(*pf)(void);
typedef struct Process {
int id;
pf function;
int period;
int start;
int priority;
} Process;
struct Process POOL[POOL_SIZE];
int head, tail, timerCounter;
int kernelInit(void);
int kernelAddProc(Process* newProc);
void kernelLoop(void);
void kernelClock(void);
int processA(void);
int processB(void);
int processC(void);
void sortPool(void);
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
static void MX_USART2_UART_Init(void);
int main(void) {
HAL_Init();
SystemClock_Config();
initGPIO();
MX_USART2_UART_Init();
kernelInit();
Process proc1 = { 1, processA, 5, 5, 1 };
Process proc2 = { 2, processB, 15, 15, 2 };
Process proc3 = { 3, processC, 10, 10, 3 };
kernelAddProc(&proc1);
kernelAddProc(&proc2);
kernelAddProc(&proc3);
kernelLoop();
return 0;
}
int kernelInit(void) {
head = 0;
tail = 0;
timerCounter = 0;
return SUCCESS;
}
int kernelAddProc(Process *newProc) {
if((tail + 1) % POOL_SIZE == head) return FAIL;
POOL[tail].id = newProc->id;
POOL[tail].function = newProc->function;
POOL[tail].period = newProc->period;
POOL[tail].start = 0;
if (newProc->start <= 0) {
POOL[tail].start = newProc->start;
}
POOL[tail].start += newProc->period;
tail = (tail + 1) % POOL_SIZE;
return SUCCESS;
}
void kernelLoop(void) {
uint32_t previousTime;
while(1) {
uint32_t currentTime = HAL_GetTick();
uint32_t elapsedTime = currentTime - previousTime;
if (elapsedTime >= 1000) {
previousTime = currentTime;
printf("\nTime: %d seconds", timerCounter);
if (head != tail) {
sortPool();
if (POOL[head].start <= 0) {
int ans = POOL[head].function();
if (ans == REPEAT) {
kernelAddProc(&POOL[head]);
}
head = (head + 1) % POOL_SIZE;
}
}
kernelClock();
previousTime = HAL_GetTick();
timerCounter++;
printf("\n");
}
}
}
void kernelClock() {
int i = head;
while (i != tail) {
POOL[i].start--;
i = (i+1) % POOL_SIZE;
}
}
int processA(void) {
printf("\n\n------------------------");
printf("\n| Process A is running |");
printf("\n------------------------");
HAL_GPIO_WritePin(LED_PORT, LED_BLUE_PIN, GPIO_PIN_SET);
HAL_Delay(900);
HAL_GPIO_WritePin(LED_PORT, LED_BLUE_PIN, GPIO_PIN_RESET);
return REPEAT;
}
int processB(void) {
printf("\n\n------------------------");
printf("\n| Process B is running |");
printf("\n------------------------");
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN, GPIO_PIN_SET);
HAL_Delay(1500);
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN, GPIO_PIN_RESET);
return REPEAT;
}
int processC(void) {
printf("\n\n------------------------");
printf("\n| Process C is running |");
printf("\n------------------------");
HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN, GPIO_PIN_SET);
HAL_Delay(1300);
HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN, GPIO_PIN_RESET);
return REPEAT;
}
void sortPool() {
int next = head;
int adj = (next + 1) % POOL_SIZE;
while (adj != tail) {
if (
POOL[adj].start < POOL[next].start ||
(POOL[next].start == POOL[adj].start && POOL[adj].priority > POOL[next].priority)
) {
next = adj;
}
adj = (adj + 1) % POOL_SIZE;
}
Process temp;
temp = POOL[next];
POOL[next] = POOL[head];
POOL[head] = temp;
}
// ---------------------------------------------
void osSystickHandler(void) {
// 1 Hz blinking:
if ((HAL_GetTick() % 500) == 0)
{
HAL_GPIO_TogglePin(LED_PORT, LED_3_PIN);
}
}
void initGPIO() {
GPIO_InitTypeDef GPIO_Config;
GPIO_Config.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Config.Pull = GPIO_NOPULL;
GPIO_Config.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_Config.Pin = LED_RED_PIN;
LED_PORT_CLK_ENABLE();
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
GPIO_Config.Pin = LED_GREEN_PIN;
LED_PORT_CLK_ENABLE();
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
GPIO_Config.Pin = LED_BLUE_PIN;
LED_PORT_CLK_ENABLE();
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
__HAL_RCC_GPIOB_CLK_ENABLE();
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
@brief USART2 Initialization Function
@param None
@retval None
*/
static void MX_USART2_UART_Init(void) {
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA15 ------> USART2_RX
*/
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = VCP_TX_Pin | VCP_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
__HAL_RCC_USART2_CLK_ENABLE();
}
void Error_Handler(void) {
/* User can add his own implementation to report the HAL error return state */
}
// The following makes printf() write to USART2:
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
int _write(int file, uint8_t *ptr, int len) {
switch (file)
{
case STDOUT_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
case STDERR_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
default:
return -1;
}
return len;
}