from machine import Pin, SPI
from random import random, seed
from ili9341 import Display, color565
from utime import sleep_us, ticks_cpu, ticks_us, ticks_diff
import mySetup
import math
import ili9341
oc_freq = 270000000
machine.freq(oc_freq)
display = mySetup.createMyDisplay()
### Downsample
pixelSize = 8;
class Vector2:
"""A two-dimensional vector with Cartesian coordinates."""
def __init__(self, x, y):
self.x, self.y = x, y
def __str__(self):
"""Human-readable string representation of the vector."""
return '{:g}i + {:g}j'.format(self.x, self.y)
def __repr__(self):
"""Unambiguous string representation of the vector."""
return repr((self.x, self.y))
def dot(self, other):
"""The scalar (dot) product of self and other. Both must be vectors."""
if not isinstance(other, Vector2D):
raise TypeError('Can only take dot product of two Vector2D objects')
return self.x * other.x + self.y * other.y
# Alias the __matmul__ method to dot so we can use a @ b as well as a.dot(b).
__matmul__ = dot
def __sub__(self, other):
"""Vector subtraction."""
return Vector2(self.x - other.x, self.y - other.y)
def __add__(self, other):
"""Vector addition."""
return Vector2(self.x + other.x, self.y + other.y)
def __mul__(self, scalar):
"""Multiplication of a vector by a scalar."""
if isinstance(scalar, int) or isinstance(scalar, float):
return Vector2(self.x*scalar, self.y*scalar)
raise NotImplementedError('Can only multiply Vector2D by a scalar')
def __rmul__(self, scalar):
"""Reflected multiplication so vector * scalar also works."""
return self.__mul__(scalar)
def __neg__(self):
"""Negation of the vector (invert through origin.)"""
return Vector2(-self.x, -self.y)
def __truediv__(self, scalar):
"""True division of the vector by a scalar."""
return Vector2(self.x / scalar, self.y / scalar)
def __mod__(self, scalar):
"""One way to implement modulus operation: for each component."""
return Vector2(self.x % scalar, self.y % scalar)
def __abs__(self):
"""Absolute value (magnitude) of the vector."""
return math.sqrt(self.x**2 + self.y**2)
def distance_to(self, other):
"""The distance between vectors self and other."""
return abs(self - other)
def to_polar(self):
"""Return the vector's components in polar coordinates."""
return self.__abs__(), math.atan2(self.y, self.x)
sW = 320 * (1/pixelSize);
sH = 240 * (1/pixelSize);
for x in range(0,sW):
for y in range(sH):
uv=Vector2(x/sW,1.-y/sH)
speed = .1;
scale = 0.1 *(pixelSize/8);
p = Vector2(x*scale,y*scale)
for i in range(1,4):
p.x+=0.3/i*math.sin(i*3.*p.y);
p.y+=0.3/i*math.cos(i*3.*p.x);
r=math.cos(p.x+p.y+1.)*.5+.5;
g=math.sin(p.x+p.y+1.)*.5+.5;
b=(math.sin(p.x+p.y)+math.cos(p.x+p.y))*.3+.5;
w = h = pixelSize;
c = ili9341.color565(int(r*255),int(g*255),int(b*255))
display.fill_rectangle(x*w,y*h,w,h, c)
while True:
pass
print("- bye -")