#include <Adafruit_BusIO_Register.h>
#include <Adafruit_I2CDevice.h>
#include <Adafruit_I2CRegister.h>
#include <Adafruit_SPIDevice.h>
#include <fix_fft.h>
//#include <Adafruit_Circuit_Playground.h>
// Follow us on Hackster, Hackaday and the Instructables.
//Please First uncomment/comment the oled driver lines, which you are using
//Circuitkicker.com -- Sagar saini --sainisagar7294
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
//#include <Adafruit_SH1106.h> // https://github.com/wonho-maker/Adafruit_SH1106
#include <EEPROM.h>
#define SCREEN_WIDTH 128 // OLED display width
#define SCREEN_HEIGHT 64 // OLED display height
#define REC_LENG 200 // size of wave data buffer
#define DISP_LENG 100 // size of display data
#define MIN_TRIG_SWING 5 // minimum trigger swing.(Display "Unsync" if swing smaller than this value
#define DOTS_DIV 25
// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)
Adafruit_SSD1306 oled(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET); // device name is oled
//Adafruit_SH1106 oled(OLED_RESET); // use this when SH1106
#define R_12k 4 // 12k ohm
#define R_820k 16 // 820k ohm for AC low range
#define R_82k 17 // 82k omm for AC Hi range
// Range name table (those are stored in flash memory)
const char vRangeName[10][5] PROGMEM = {"A50V", "A 5V", " 50V", " 20V", " 10V", " 5V", " 2V", " 1V", "0.5V", "0.2V"}; // Vertical display character (number of characters including \ 0 is required)
const char * const vstring_table[] PROGMEM = {vRangeName[0], vRangeName[1], vRangeName[2], vRangeName[3], vRangeName[4], vRangeName[5], vRangeName[6], vRangeName[7], vRangeName[8], vRangeName[9]};
const char hRangeName[22][6] PROGMEM = {"200ms", "100ms", " 50ms", " 20ms", " 10ms", " 5ms", " 2ms", " 1ms", "500us", "200us", "100us", " 50us", " 81us", " 41us", " 20us", "156us", " 78us", " 31us", "15.6u", "7.8us", "3.1us", "1.56u"}; // Hrizontal display characters
const char * const hstring_table[] PROGMEM = {hRangeName[0], hRangeName[1], hRangeName[2], hRangeName[3], hRangeName[4], hRangeName[5], hRangeName[6], hRangeName[7], hRangeName[8], hRangeName[9],
hRangeName[10], hRangeName[11], hRangeName[12], hRangeName[13], hRangeName[14], hRangeName[15], hRangeName[16], hRangeName[17], hRangeName[18], hRangeName[19], hRangeName[20], hRangeName[21]};
const float hRangeValue[] PROGMEM = { 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.5e-3, 0.2e-3, 0.2e-3, 0.2e-3, 81.3e-6, 81.3e-6, 81.3e-6, 156.25e-6, 78.125e-6, 31.25e-6, 15.625e-6, 7.8125e-6, 3.125e-6, 1.5625e-6}; // record speed in second. ( = 25pix on screen) this value used for freq calc.
int waveBuff[REC_LENG]; // wave form buffer (RAM remaining capacity is barely)
char chrBuff[8]; // display string buffer
char hScale[] = "xxxAs"; // horizontal scale character
char vScale[] = "xxxx"; // vartical scale
float lsb5V = 0.00563965; // (5V)sensivity coefficient of 5V range. std=0.00563965 1.1*630/(1024*120)
float lsb50V = 0.0512939; // (50V)sensivity coefficient of 50V range. std=0.0512939 1.1*520.91/(1024*10.91)
float lsb5Vac = 0.00630776; // std=0.00630776 V/LSB
float lsb50Vac = 0.0579751; // std=0.0579751 V/LSB
volatile int vRange; // V-range number 2:50V, 3:20V, 4:10V, 5:5V, 6:2V, 7:1V, 8:0.5V, 9:0.2V
volatile int hRange; // H-range nubmer 0:200ms, 1:100ms, 2:50ms, 3:20ms, 4:10ms, 5:5ms, 6;2ms, 7:1ms, 8:500us, 9:200us, 10:100us, 11:50us, 12:
volatile int trigD; // trigger slope flag, 0:positive 1:negative
volatile int scopeP; // operation scope position number. 0:Veratical, 1:Hrizontal, 2:Trigger slope, 3:DC/AC/FFT
volatile boolean hold = false; // hold flag
volatile boolean switchPushed = false; // flag of switch pusshed !
volatile int saveTimer; // remaining time for saving EEPROM
int timeExec; // approx. execution time of current range setting (ms)
int dataMin; // buffer minimum value (smallest=0)
int dataMax; // maximum value (largest=1023)
int dataAve; // 10 x average value (use 10x value to keep accuracy. so, max=10230)
int dataRms; // 10x rms. value
int rangeMax; // buffer value to graph full swing
int rangeMin; // buffer value of graph botto
int rangeMaxDisp; // display value of max. (100x value)
int rangeMinDisp; // display value if min.
int trigP; // trigger position pointer on data buffer
boolean trigSync; // flag of trigger detected
int att10x; // 10x attenuator ON (effective when 1)
int inMode; // 0=DC+, 1=DC+-, 2=AC
int offset5Vac;
int offset50Vac;
float waveFreq; // frequency (Hz)
float waveDuty; // duty ratio (%)
#include <fix_fft.h>
#define FFT_N 128
volatile boolean fftMode = false; // FFT mode false:Wave, true:FFT
void setup() {
pinMode(2, INPUT_PULLUP); // reserve (button press interrupt (int.0 IRQ))
pinMode(3, OUTPUT); // PWM for trigger level
pinMode(R_12k, INPUT); // pin4 1/10 attenuator(Off=High-Z, Enable=Output Low)
pinMode(5, INPUT_PULLUP); // FFT mode
pinMode(7, INPUT_PULLUP); // AC mode
pinMode(8, INPUT_PULLUP); // Select button
pinMode(9, INPUT_PULLUP); // Up
pinMode(10, INPUT_PULLUP); // Calibration pulse output
pinMode(11, INPUT_PULLUP); // Hold
pinMode(12, INPUT_PULLUP); // Down
pinMode(13, OUTPUT); // LED
pinMode(R_820k, INPUT); // A2
pinMode(R_82k, INPUT); // A3
DIDR0 = 0x0f; // disable digital input buffer of A0-A3
oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // select 3C or 3D (set your OLED I2C address)
// oled.begin(SH1106_SWITCHCAPVCC, 0x3C); // use this when SH1106
auxFunctions(); // Voltage measure (never return)
loadEEPROM(); // read last settings from EEPROM
#define REFERENCE_INTERNAL
#ifdef REFERENCE_INTERNAL
analogReference(INTERNAL); // ADC full scale = 1.1V
trigger_level(26); // PWM triger level 0.5V for ET
#else
analogReference(DEFAULT); // ADC full scale = 5.0V
trigger_level(128); // PWM triger level 2.5V for ET
#endif
(void) analogRead(0); // dummy read to select A0 and reference
#ifdef USE_PIN2IRQ
attachInterrupt(0, pin2IRQ, FALLING); // activate IRQ at falling edge mode
#else
PCMSK0 = _BV(PCINT4) | _BV(PCINT3) | _BV(PCINT1) | _BV(PCINT0); // D8,D9,D12 pin change interrupt
PCICR = _BV(PCIE0); // enable interrupt from PCIE0 group
#endif
startScreen(); // display start message
}
void loop() {
if (hRange < 15) pulse(); // calibration pulse is for realtime sampling only
setInputOffset(); // coupling mode set(AC/DC)
setConditions(); // set measurment conditions
digitalWrite(13, HIGH); // flash LED
readWave(); // read wave form and store into buffer memory
digitalWrite(13, LOW); // stop LED
setConditions(); // set measurment conditions again (reflect change during measure)
dataAnalize(); // analize data
writeCommonImage(); // write fixed screen image (2.6ms)
plotData(); // plot waveform (10-18ms)
dispInf(); // display information (6.5-8.5ms)
oled.display(); // send screen buffer to OLED (37ms)
saveEEPROM(); // save settings to EEPROM if necessary
while (hold == true) { // wait if Hold flag ON
dispHold();
if (inMode > 0) { // if DC mode,
if (acZero() == 1) { // if offset adj. executed
scopeP = 0; // scope position to vartical
hold = false; // cancel hold
}
delay(10);
} //
}
}
int acZero() { // cancel AC renge offset
if (digitalRead(8) == LOW) { // if select pushed
if (vRange >= 5) { // = 5V or less
offset5Vac = dataAve / 10; // adjust the offset
} else { // range more than 5V
offset50Vac = dataAve / 10; // adjust the offset
}
saveEEPROM(); //
return 1; // adjusted
}
return 0; // no adjust
}
void setInputOffset() { // set offset circuit
if (inMode >= 1) { // if AC mode
if (att10x == 1) { // 10X-att enabled
pull5V(R_82k); // ‹ pull 5V by 82k
hiZ(R_820k);
} else { // 10X-att disable
hiZ(R_82k);
pull5V(R_820k); // pull 5V by 820k
}
} else { // DC mode
hiZ(R_820k); // Hi-Z
hiZ(R_82k); // Hi-Z
}
}
void hiZ(int n) { // set the pin to hi-z
pinMode(n, INPUT); // set INPUT
digitalWrite(n, LOW); // no pull up
}
void pull5V(int n) { // ‹ pull 5V through registor
pinMode(n, OUTPUT); // set OUTPUT
digitalWrite(n, HIGH); // OUTPUT HIGH
}
void pullGND(int n) { // pull GND through registor
pinMode(n, OUTPUT); // set OUTPUT
digitalWrite(n, LOW); // output LOW
}
void setConditions() { // measuring condition setting
if (digitalRead(7) == LOW) { // set AC/DC
inMode = 1; // ƒ‰
} else {
inMode = 0; //
}
// get range name from PROGMEM
strcpy_P(hScale, (char*)pgm_read_word(&(hstring_table[hRange]))); // H range name
strcpy_P(vScale, (char*)pgm_read_word(&(vstring_table[vRange]))); // V range name
switch (vRange) { // setting of Vrange
case 0: // 削除ã—ãŸã€delaeted Auto50V range
att10x = 1; // use input attenuator
break;
case 1: // 削除ã—ãŸã€delaeted Auto 5V range
att10x = 0; // no attenuator
break;
case 2: // 50V range
if (inMode == 0) {
rangeMax = 50.0 / lsb50V; // set full scale pixcel count number
rangeMaxDisp = 5000; // vartical scale (set100x value)
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset50Vac + 25.0 / lsb50Vac; // set full scale pixcel count number
rangeMaxDisp = 2500; // vartical scale (set100x value)
rangeMin = offset50Vac - 25.0 / lsb50Vac;
rangeMinDisp = -2500;
}
att10x = 1; // use input attenuator
break;
case 3: // 20V range
if (inMode == 0) {
rangeMax = 20.0 / lsb50V; // set full scale pixcel count number
rangeMaxDisp = 2000;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset50Vac + 10.0 / lsb50Vac; // set full scale pixcel count number
rangeMaxDisp = 1000;
rangeMin = offset50Vac - 10.0 / lsb50Vac;
rangeMinDisp = -1000;
}
att10x = 1; // use input attenuator
break;
case 4: // 10V range
if (inMode == 0) {
rangeMax = 10.0 / lsb50V; // set full scale pixcel count number
rangeMaxDisp = 1000;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset50Vac + 5.0 / lsb50Vac; // set full scale pixcel count number
rangeMaxDisp = 500;
rangeMin = offset50Vac - 5.0 / lsb50Vac;
rangeMinDisp = -500;
}
att10x = 1; // use input attenuator
break;
case 5: // 5V range
if (inMode == 0) {
rangeMax = 5.0 / lsb5V; // set full scale pixcel count number
rangeMaxDisp = 500;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset5Vac + 2.5 / lsb5Vac; // set full scale pixcel count number
rangeMaxDisp = 250;
rangeMin = offset5Vac - 2.5 / lsb5Vac;
rangeMinDisp = -250;
}
att10x = 0; // no input attenuator
break;
case 6: // 2V range
if (inMode == 0) {
rangeMax = 2.0 / lsb5V; // set full scale pixcel count number
rangeMaxDisp = 200;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset5Vac + 1.0 / lsb5Vac; // set full scale pixcel count number
rangeMaxDisp = 100;
rangeMin = offset5Vac - 1.0 / lsb5Vac;
rangeMinDisp = -100;
}
att10x = 0; // no input attenuator
break;
case 7: // 1V range
if (inMode == 0) {
rangeMax = 1.0 / lsb5V; // set full scale pixcel count number
rangeMaxDisp = 100;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset5Vac + 0.5 / lsb5Vac; // set full scale pixcel count number
rangeMaxDisp = 50;
rangeMin = offset5Vac - 0.5 / lsb5Vac;
rangeMinDisp = -50;
}
att10x = 0; // no input attenuator
break;
case 8: // 0.5V range
if (inMode == 0) {
rangeMax = 0.5 / lsb5V; // set full scale pixcel count number
rangeMaxDisp = 50;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset5Vac + 0.25 / lsb5Vac; // set full scale pixcel count number
rangeMaxDisp = 25;
rangeMin = offset5Vac - 0.25 / lsb5Vac;
rangeMinDisp = -25;
}
att10x = 0; // no input attenuator
break;
case 9: // 0.2V range
if (inMode == 0) {
rangeMax = 0.2 / lsb5V; // set full scale pixcel count number
rangeMaxDisp = 20;
rangeMin = 0;
rangeMinDisp = 0;
} else {
rangeMax = offset5Vac + 0.1 / lsb5Vac; // set full scale pixcel count number
rangeMaxDisp = 10;
rangeMin = offset5Vac - 0.1 / lsb5Vac;
rangeMinDisp = -10;
}
att10x = 0; // no input attenuator
break;
}
}
void writeCommonImage() { // 共通画åƒã®ä½œç”» Common screen image drawing
oled.clearDisplay(); // 全クリア erase all(0.4ms)
if (fftMode == true) return; // no need for the FFT display
oled.setTextColor(WHITE); // write in white character
oled.drawFastVLine(26, 9, 55, WHITE); // left vartical line
oled.drawFastVLine(127, 9, 3, WHITE); // right vrtical line up
oled.drawFastVLine(127, 61, 3, WHITE); // right vrtical line bottom
oled.drawFastHLine(24, 9, 7, WHITE); // Max value auxiliary mark
oled.drawFastHLine(24, 36, 2, WHITE);
oled.drawFastHLine(24, 63, 7, WHITE);
oled.drawFastHLine(51, 9, 3, WHITE); // Max value auxiliary mark
oled.drawFastHLine(51, 63, 3, WHITE);
oled.drawFastHLine(76, 9, 3, WHITE); // Max value auxiliary mark
oled.drawFastHLine(76, 63, 3, WHITE);
oled.drawFastHLine(101, 9, 3, WHITE); // Max value auxiliary mark
oled.drawFastHLine(101, 63, 3, WHITE);
oled.drawFastHLine(123, 9, 5, WHITE); // right side Max value auxiliary mark
oled.drawFastHLine(123, 63, 5, WHITE);
for (int x = 26; x <= 128; x += 5) {
oled.drawFastHLine(x, 36, 2, WHITE); // Draw the center line (horizontal line) with a dotted line
}
for (int x = (127 - 25); x > 30; x -= 25) {
for (int y = 10; y < 63; y += 5) {
oled.drawFastVLine(x, y, 2, WHITE); // Draw 3 vertical lines with dotted lines
}
}
}
void readWave() { // 波形ã®èªã¿å–ã‚Š Record waveform to memory array
byte *p = (byte *) waveBuff;
if (att10x == 1) { // if 1/10 attenuator required
pullGND(R_12k);
} else { // if not required
hiZ(R_12k);
}
switchPushed = false; // Clear switch operation flag
switch (hRange) { // set recording conditions in accordance with the range number
case 0: // 200ms range
timeExec = 1600 + 60; // Approximate execution time(ms) Used for countdown until saving to EEPROM
sample_us(200000L);
break;
case 1: // 100ms range
timeExec = 800 + 60; // Approximate execution time(ms) Used for countdown until saving to EEPROM
sample_us(100000L);
break;
case 2: // 50ms range
timeExec = 400 + 60; // Approximate execution time(ms)
sample_us(50000L);
break;
case 3: // 20ms range
timeExec = 160 + 60; // Approximate execution time(ms)
sample_us(20000L);
break;
case 4: // 10ms range
timeExec = 80 + 60; // Approximate execution time(ms)
sample_us(10000L);
break;
case 5: // 5ms range
timeExec = 40 + 60; // Approximate execution time(ms)
sample_us(5000L);
break;
case 6: // 2ms range
timeExec = 16 + 60; // Approximate execution time(ms)
ADCSRA = (ADCSRA & 0xf8) | 0x06; // dividing ratio = 64 (0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
waveBuff[i] = analogRead(0); // read and save approx 56us
delayMicroseconds(23); // timing adjustmet tuned
}
break;
case 7: // 1ms range
timeExec = 8 + 60; // Approximate execution time(ms)
ADCSRA = (ADCSRA & 0xf8) | 0x05; // dividing ratio = 16 (0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
waveBuff[i] = analogRead(0); // read and save approx 28us
delayMicroseconds(11); // timing adjustmet tuned
}
break;
case 8: // 500us range
timeExec = 4 + 60; // Approximate execution time(ms)
ADCSRA = (ADCSRA & 0xf8) | 0x04; // dividing ratio = 16(0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
waveBuff[i] = analogRead(0); // read and save approx 16us
delayMicroseconds(4); // timing adjustmet
// time fine adjustment 0.0625 x 8 = 0.5us(nop=0.0625us @16MHz)
asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
}
break;
case 9:
case 10:
case 11: // 共通 common 200, 100, 50us range
timeExec = 2 + 60; // Approximate execution time(ms)
ADCSRA = (ADCSRA & 0xf8) | 0x02; // dividing ratio = 4(0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
waveBuff[i] = analogRead(0); // read and save approx 6us
// time fine adjustment 0.0625 * 20 = 1.25us (nop=0.0625us @16MHz)
asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
}
break;
case 12: // full speed, ADC free run. 81.25us/div 308ksps
case 13: // x2 40.625us/div
case 14: // x4 20.3125us/div
timeExec = 1 + 60; // Approximate execution time(ms)
ADCSRB = 0x40; // Auto Trigger free run
ADCSRA = (ADCSRA & 0xf8) | 0x62; // Auto Trigger Enable. dividing ratio = 4(0x1=2, 0x2=4, 0x3=8, 0x4=16, 0x5=32, 0x6=64, 0x7=128)
cli(); // no interrupt for TIMING
for (int i = 0; i < REC_LENG; i++) {
while ((ADCSRA & 0x10) == 0); // polling until adif==1
ADCSRA |= 0x10; // clear ADIF bit so that ADC can do next operation
*p++ = ADCL; // must read adch low byte first
*p++ = ADCH; // read adch high byte
}
ADCSRA = ADCSRA & 0x9f; // stop ADC free run ADSC=0 ADATE=0
sei(); // no interrupt for TIMING
break;
case 15: // 156.25us/div equivalent time sampling
case 16: // 78.125us/div equivalent time sampling
case 17: // 31.25us/div equivalent time sampling
case 18: // 15.625us/div equivalent time sampling
case 19: // 7.8125us/div equivalent time sampling
case 20: // 3.125us/div equivalent time sampling
case 21: // 1.5625us/div equivalent time sampling
extern byte oscspeed;
timeExec = 2 + 60; // Approximate execution time(ms)
oscspeed = 21 - hRange; // oscspeed = 6...0
modeequiv();
break;
}
}
void dataAnalize() { // 波形ã®åˆ†æž get various information from wave form
long d;
long sum = 0;
// search max and min value
dataMin = 1023; // min value initialize to big number
dataMax = 0; // max value initialize to small number
for (int i = 0; i < REC_LENG; i++) { // serach max min value
d = waveBuff[i];
sum = sum + d;
if (d < dataMin) { // update min
dataMin = d;
}
if (d > dataMax) { // updata max
dataMax = d;
}
}
// calculate average
dataAve = (sum + 10) / 20; // Average value calculation (calculated by 10 times to improve accuracy)
// 実効値ã®è¨ˆç®— rms value calc.
sum = 0;
for (int i = 0; i < REC_LENG; i++) { // ãƒãƒƒãƒ•ã‚¡å…¨ä½“ã«å¯¾ã— to all buffer
d = waveBuff[i] - (dataAve + 5) / 10; // オーãƒãƒ¼ãƒ•ãƒãƒ¼é˜²æ¢ã®ãŸã‚生ã®å€¤ã§è¨ˆç®—(10å€ã—ãªã„)
sum += d * d; // 二乗和をç©åˆ†
}
dataRms = sqrt(sum / REC_LENG); // 実効値ã®10å€ã®å€¤ get rms value
// Trigger position search
for (trigP = (DISP_LENG / 2); trigP < (REC_LENG - 1 - (DISP_LENG / 2)); trigP++) { // Find the points that straddle the median at the center ± 50 of the data range
if (trigD == 0) { // if trigger direction is positive
if ((waveBuff[trigP - 1] < (dataMax + dataMin) / 2) && (waveBuff[trigP] >= (dataMax + dataMin) / 2)) {
break; // positive trigger position found !
}
} else { // trigger direction is negative
if ((waveBuff[trigP - 1] > (dataMax + dataMin) / 2) && (waveBuff[trigP] <= (dataMax + dataMin) / 2)) {
break;
} // negative trigger poshition found !
}
}
#ifdef ET_NATIVE_TRIGGER
if (hRange > 14)
trigP = 50; // equivalent time sampling use delayed trigger
#endif
trigSync = true;
if (trigP >= ((REC_LENG / 2) + (DISP_LENG / 2))) { // If the trigger is not found in range
trigP = (REC_LENG / 2); // Set it to the center for the time being
trigSync = false; // set Unsync display flag
}
if ((dataMax - dataMin) <= MIN_TRIG_SWING) { // amplitude of the waveform smaller than the specified value
trigSync = false; // set Unsync display flag
}
freqDuty();
}
void freqDuty() { // 周波数ã¨ãƒ‡ãƒ¥ãƒ¼ãƒ†ã‚£æ¯”を求ã‚ã‚‹ detect frequency and duty cycle value from waveform data
int swingCenter; // center of wave (half of p-p)
float p0 = 0; // 1-st posi edge
float p1 = 0; // total length of cycles
float p2 = 0; // total length of pulse high time
float pFine = 0; // fine position (0-1.0)
float lastPosiEdge; // last positive edge position
float pPeriod; // pulse period
float pWidth; // pulse width
int p1Count = 0; // wave cycle count
int p2Count = 0; // High time count
boolean a0Detected = false;
// boolean b0Detected = false;
boolean posiSerch = true; // true when serching posi edge
swingCenter = (3 * (dataMin + dataMax)) / 2; // calculate wave center value
for (int i = 1; i < REC_LENG - 2; i++) { // scan all over the buffer
if (posiSerch == true) { // posi slope (frequency serch)
if ((sum3(i) <= swingCenter) && (sum3(i + 1) > swingCenter)) { // if across the center when rising (+-3data used to eliminate noize)
pFine = (float)(swingCenter - sum3(i)) / ((swingCenter - sum3(i)) + (sum3(i + 1) - swingCenter) ); // fine cross point calc.
if (a0Detected == false) { // if 1-st cross
a0Detected = true; // set find flag
p0 = i + pFine; // save this position as startposition
} else {
p1 = i + pFine - p0; // record length (length of n*cycle time)
p1Count++;
}
lastPosiEdge = i + pFine; // record location for Pw calcration
posiSerch = false;
}
} else { // nega slope serch (duration serch)
if ((sum3(i) >= swingCenter) && (sum3(i + 1) < swingCenter)) { // if across the center when falling (+-3data used to eliminate noize)
pFine = (float)(sum3(i) - swingCenter) / ((sum3(i) - swingCenter) + (swingCenter - sum3(i + 1)) );
if (a0Detected == true) {
p2 = p2 + (i + pFine - lastPosiEdge); // calucurate pulse width and accumurate it
p2Count++;
}
posiSerch = true;
}
}
}
pPeriod = p1 / p1Count; // pulse period
pWidth = p2 / p2Count; // palse width
waveFreq = DOTS_DIV / ((pgm_read_float(hRangeValue + hRange) * pPeriod)); // frequency
waveDuty = 100.0 * pWidth / pPeriod; // duty ratio
}
int sum3(int k) { // Sum of before and after and own value
int m = waveBuff[k - 1] + waveBuff[k] + waveBuff[k + 1];
return m;
}
void startScreen() { // é–‹å§‹ç”»é¢ Staru up screen
oled.clearDisplay();
// oled.setTextSize(2); // at double size character
oled.setTextColor(WHITE);
oled.println(F("Oscilloscope")); // Title(Poor Man's Osilloscope, RadioPench 1)
oled.println(F("Sagar Saini")); // this for SH1106
oled.display(); // actual display here
delay(1500);
oled.clearDisplay();
oled.setTextSize(1); // After this, standard font size
}
void dispHold() { // display "Hold"
oled.fillRect(42, 11, 24, 8, BLACK); // black paint 4 characters
oled.setCursor(42, 11);
oled.print(F("Hold")); // Hold
oled.display(); //
}
void dispInf() { // å„ç¨®æƒ…å ±ã®è¡¨ç¤º Display of various information
float volt;
// DC/ACカップル表示 display DC/AC couple mode
oled.setCursor(1, 0);
#ifndef UNDERLINE_SCOPE
if (scopeP == 3) { // if scoped
oled.setTextColor(BLACK, WHITE);
}
#endif
if (fftMode == true) {
oled.print(F("FF"));
} else if (inMode == 0) {
oled.print(F("DC"));
} else {
oled.print(F("AC"));
}
#ifndef UNDERLINE_SCOPE
oled.setTextColor(WHITE);
#else
if (scopeP == 3) { // if scoped
oled.drawFastHLine(0, 7, 14, WHITE); // display scoped mark at the bottom
oled.drawFastVLine(0, 5, 2, WHITE);
oled.drawFastVLine(13, 5, 2, WHITE);
}
#endif
// 垂直感度表示 vertical sensitivity
oled.setCursor(15, 0); // around top left
oled.print(vScale); // vertical sensitivity value
if (scopeP == 0) { // if scoped
oled.drawFastHLine(13, 7, 27, WHITE); // display scoped mark at the bottom
oled.drawFastVLine(13, 5, 2, WHITE);
oled.drawFastVLine(39, 5, 2, WHITE);
}
// 水平速度表示 horizontal sweep speed
oled.setCursor(42, 0); //
oled.print(hScale); // display sweep speed (time/div)
if (scopeP == 1) { // if scoped
oled.drawFastHLine(40, 7, 33, WHITE); // display scoped mark
oled.drawFastVLine(40, 5, 2, WHITE);
oled.drawFastVLine(72, 5, 2, WHITE);
}
if (hRange > 14 && fftMode == false) { // if equivalent time sampling
oled.setCursor(0, 21); //
oled.print(F("ET"));
}
// トリガー極性表示 trigger polarity
oled.setCursor(75, 0); // at top center
if (trigD == 0) { // if positive
oled.print(char(0x18)); // up mark
} else {
oled.print(char(0x19)); // down mark ↓
}
if (scopeP == 2) { // if scoped
oled.drawFastHLine(72, 7, 11, WHITE); // display scoped mark
oled.drawFastVLine(72, 5, 2, WHITE);
oled.drawFastVLine(82, 5, 2, WHITE);
}
// 電圧測定çµæžœè¡¨ç¤ºã€€average voltage
if (inMode == 0) { // DCモードãªã‚‰ if DC mode
oled.setCursor(86, 0);
oled.print(F("av")); // av : average
if (att10x == 1) { // if 10x attenuator is used
volt = dataAve * lsb50V / 10.0; // å¹³å‡é›»åœ§50V(10å€å€¤ãªã®ã§è£œæ£) range value
} else { // no!
volt = dataAve * lsb5V / 10.0; // 5V (10å€å€¤ãªã®ã§è£œæ£ï¼‰range value
}
if (volt < 9.995) { // if less than 10V
dtostrf(volt, 4, 2, chrBuff); // format x.xx
} else { // no! over 10
dtostrf(volt, 4, 1, chrBuff); // format xx.x
}
} else { // AC モードãªã‚‰ AC mode
oled.setCursor(86, 0);
oled.print(F("rm")); // rm : rms root mean square
if (att10x == 1) { // if 10x attenuator is used
volt = dataRms * lsb50Vac; // 実効値 50V range value
} else { // no!
volt = dataRms * lsb5Vac; // 5V range value
}
if (volt < 9.995) { // if less than 10V
dtostrf(volt, 4, 2, chrBuff); // format x.xx
} else { // no!
dtostrf(volt, 4, 1, chrBuff); // format xx.x
}
}
oled.setCursor(98, 0); // at top right
oled.print(chrBuff); // 電圧ã®å€¤ã‚’表示 display voltage
oled.print(F("V"));
// 周波数ã¨ãƒ‡ãƒ¥ãƒ¼ãƒ†ã‚£æ¯”ã®è¡¨ç¤º display frequency, duty % or trigger missed
if (trigSync == false) { // If trigger point can't found
oled.fillRect(92, 14, 24, 8, BLACK); // black paint 4 character
oled.setCursor(92, 14); //
oled.print(F("unSync")); // display Unsync
} else {
oled.fillRect(91, 12, 25, 9, BLACK); // erase Freq area
oled.setCursor(92, 13); // set display location
if (waveFreq < 9.9995) { // if less than 9.9995Hz
oled.print(waveFreq, 2); // display 9.99Hz
oled.print(F("Hz"));
} else if (waveFreq < 99.995) { // if less than 99.995Hz
oled.print(waveFreq, 1); // display 99.9Hz
oled.print(F("Hz"));
} else if (waveFreq < 999.95) { // if less than 999.95Hz
oled.print(waveFreq, 1); // display 999.9H
oled.print(F("H"));
} else if (waveFreq < 9995.0) { // if less than 9.995kHz
oled.print((waveFreq / 1000.0), 2); // display 9.99kH
oled.print(F("kH"));
} else if (waveFreq < 99950.0) { // if less than 99.95kHz // if more
oled.print((waveFreq / 1000.0), 1); // display 99.9kH
oled.print(F("kH"));
} else { // if more
oled.print((waveFreq / 1000.0), 0); // display 999kHz
oled.print(F("kHz"));
}
oled.fillRect(97, 21, 25, 10, BLACK); // erase Freq area (as small as possible)
oled.setCursor(98, 23); // set location
oled.print(waveDuty, 1); // display duty (High level ratio) in %
oled.print(F("%"));
}
// 波形ã®å·¦ã«åž‚直電圧目盛り表示 vartical scale lines
if (fftMode == true) return; // no need for the FFT display
volt = rangeMaxDisp / 100.0; // convert Max voltage
if (vRange <= 3) { // 20Vレンジã‹ãれ以上ãªã‚‰ if range is 20 or more
dtostrf(volt, 4, 0, chrBuff); // format ** 
} else {
if (vRange <= 7) {
dtostrf(volt, 4, 1, chrBuff); // format **.* 
} else {
dtostrf(volt, 4, 2, chrBuff); // format *.** 
}
}
oled.setCursor(0, 9);
oled.print(chrBuff); // 上é™å€¤ display Max value
volt = (rangeMaxDisp + rangeMinDisp) / 200.0; // center value calculation
if (vRange <= 3) { // 20Vレンジã‹ãれ以上ãªã‚‰
dtostrf(volt, 4, 0, chrBuff); // format ** 20
} else {
if (vRange <= 7) {
dtostrf(volt, 4, 1, chrBuff); // format **.* 
} else {
dtostrf(volt, 4, 2, chrBuff); // format *.** 
}
}
oled.setCursor(0, 33);
oled.print(chrBuff); // ä¸å¤®å€¤ display the value
volt = rangeMinDisp / 100.0; // 波形下é™å€¤ convart Min voltage
if (vRange <= 3) { // 20Vレンジã‹ãれ以上ãªã‚‰
dtostrf(volt, 4, 0, chrBuff); // format ** 20
} else {
if (vRange <= 7) {
dtostrf(volt, 4, 1, chrBuff); // format **.* 
} else {
dtostrf(volt, 4, 2, chrBuff); // format *.** 
if (inMode >= 1 ) { // 0.5 0.2V ãªã‚‰åœ§ç¸®è¡¨ç¤º compress zero(-0.25 -> -.25)
chrBuff[1] = chrBuff[2]; // 符å·ã‚ˆã‚Šå³ã®æ–‡å—列を左シフト(先é ã®ã‚¼ãƒã‚’消ã—ã¦æ–‡å—数削減)
chrBuff[2] = chrBuff[3];
chrBuff[3] = chrBuff[4];
chrBuff[4] = chrBuff[5];
}
}
}
oled.setCursor(0, 57);
oled.print(chrBuff); // 下é™å€¤ display the value
// デãƒãƒƒã‚°ç”¨ this for debug (value display on screen)
// oled.fillRect(40, 12, 25, 9, BLACK); // æ³¢å½¢é ˜åŸŸã®å·¦ä¸Šã«ã€å€¤ã®è¡¨ç¤ºç”¨ã«é»’å¡—ã‚Š
// oled.setCursor(40, 13); //
// oled.print(hRange); // 値を表示
}
void plotData() { // 波形ã®ç”»é¢ã¸ã®ãƒ—ãƒãƒƒãƒˆ plot waveform on OLED
long y1, y2;
if (fftMode == true) { // FFT表示
plotFFT();
} else if (hRange <= 9 || hRange == 12 || hRange > 14) { // 通常表示 noromal plot
for (int x = 0; x <= 98; x++) {
y1 = map(waveBuff[x + trigP - 50], rangeMin, rangeMax, 63, 9); // convert to plot address
y1 = constrain(y1, 9, 63); // Crush(Saturate) the protruding part
y2 = map(waveBuff[x + trigP - 49], rangeMin, rangeMax, 63, 9); // to address calucurate
y2 = constrain(y2, 9, 63); //
oled.drawLine(x + 27, y1, x + 28, y2, WHITE); // connect between point
}
} else if (hRange == 10 || hRange == 13) { // 100usレンジãªã‚‰2å€æ‹¡å¤§è¡¨ç¤º zoom 2X when 100us range
for (int x = 0; x <= 49; x++) {
y1 = map(waveBuff[x + trigP - 25], rangeMin, rangeMax, 63, 9); // convert to plot address
y1 = constrain(y1, 9, 63); // Crush(Saturate) the protruding part
y2 = map(waveBuff[x + trigP - 24], rangeMin, rangeMax, 63, 9); // to address calucurate
y2 = constrain(y2, 9, 63); //
oled.drawLine(x * 2 + 27, y1, x * 2 + 29, y2, WHITE); // connect between point
}
} else if (hRange == 11 || hRange == 14) { // 50usレンジãªã‚‰4å€æ‹¡å¤§è¡¨ç¤º zoom 4x when 50us range
for (int x = 0; x <= 24; x++) {
y1 = map(waveBuff[x + trigP - 13], rangeMin, rangeMax, 63, 9); // convert to plot address
y1 = constrain(y1, 9, 63); // Crush(Saturate) the protruding part
y2 = map(waveBuff[x + trigP - 12], rangeMin, rangeMax, 63, 9); // to address calucurate
y2 = constrain(y2, 9, 63); //
oled.drawLine(x * 4 + 27, y1, x * 4 + 31, y2, WHITE); // connect between point
}
}
}
void saveEEPROM() { // Save the setting value in EEPROM after waiting a while after the button operation.
if (saveTimer > 0) { // If the timer value is positive,
saveTimer = saveTimer - timeExec; // Timer subtraction
if (saveTimer < 0) { // if time up
EEPROM.write(0, vRange); // save current status to EEPROM
EEPROM.write(1, hRange);
EEPROM.write(2, trigD);
EEPROM.write(3, scopeP);
EEPROM.write(4, offset5Vac >> 8); // AC測定5Vレンジã®ã‚ªãƒ•ã‚»ãƒƒãƒˆå€¤ã®ä¸Šä½(ビッグエンディアンã§è¨˜éŒ²ï¼‰
EEPROM.write(5, offset5Vac & 0xFF); //                下ä½
EEPROM.write(6, offset50Vac >> 8); // 50V 上ä½
EEPROM.write(7, offset50Vac & 0xFF); // 下ä½
}
}
}
void loadEEPROM() { // Read setting values from EEPROM (abnormal values will be corrected to default)
int x;
x = EEPROM.read(0); // vRange
if ((x < 0) || (x > 9)) { // if out side 0-9
x = 5; // default value
}
vRange = x;
x = EEPROM.read(1); // hRange
if ((x < 0) || (x > 21)) { // if out of 0-21
x = 3; // default value
}
hRange = x;
x = EEPROM.read(2); // trigD
if ((x < 0) || (x > 1)) { // if out of 0-1
x = 1; // default value
}
trigD = x;
x = EEPROM.read(3); // scopeP
if ((x < 0) || (x > 3)) { // if out of 0-3
x = 1; // default value
}
scopeP = x;
x = EEPROM.read(4); // AC 5Vレンジã®ã‚ªãƒ•ã‚»ãƒƒãƒˆå€¤ offset value of AC5V
x = x << 8 ;
x = x | EEPROM.read(5);
if ((x < 350) || (x > 650 )) { // 異常値ã ã£ãŸã‚‰ï¼ˆ350-650ã®ç¯„囲外)if abnormal value,
x = 594; // ç†è«–値をセット default value
}
offset5Vac = x;
x = EEPROM.read(6); //AC 50Vレンジã®ã‚ªãƒ•ã‚»ãƒƒãƒˆå€¤ offset value of AC50V
x = x << 8 ;
x = x | EEPROM.read(7);
if ((x < 350) || (x > 650 )) { // 異常値ã ã£ãŸã‚‰(350-650ã®ç¯„囲外) if abnormal value,
x = 546; // ç†è«–値をセット default value
}
offset50Vac = x;
}
void auxFunctions() { // 補助機能を起動 select AUX function
if (digitalRead(8) == LOW) { // セレクトボタンãŒæŠ¼ã•ã‚Œã¦ã„ãŸã‚‰ãƒãƒƒãƒ†ãƒªãƒ¼é›»åœ§æ¸¬å®š if SELECT button pushed, measure battery voltage
battVolt();
}
if (digitalRead(9) == LOW) { // UP ボタンãªã‚‰ DMM5Vレンジ
dmm5V();
}
if (digitalRead(12) == LOW) { // DOWNボタンãªã‚‰ DMM50Vレンジ
dmm50V();
}
}
void battVolt() { // ãƒãƒƒãƒ†ãƒªãƒ¼é›»åœ§æ¸¬å®š Battery voltage measure (this for pen osillo)
float volt;
long x;
analogReference(DEFAULT); // ADC full scale set to Vcc
while (1) { // do forever
x = 0;
for (int i = 0; i < 100; i++) { // 100 times
x = x + analogRead(1); // A1ピンã®é›»åœ§æ¸¬å®šread A1 pin voltage and accumulate
}
volt = (x / 100.0) * 5.0 / 1023.0; // convert voltage value
oled.clearDisplay(); // all erase screen(0.4ms)
oled.setTextColor(WHITE); // write in white character
oled.setCursor(20, 16); //
oled.setTextSize(1); // standerd size character
oled.println(F("Battery voltage"));
oled.setCursor(35, 30); //
oled.setTextSize(2); // double size character
dtostrf(volt, 4, 2, chrBuff); // display batterry voltage x.xxV
oled.print(chrBuff);
oled.println(F("V"));
oled.display();
delay(150);
}
}
void dmm5V() { // 電圧計 5V モード digital voltmeter 5V range
float volt, vPP;
analogReference(INTERNAL);
while (1) { // ç„¡é™ãƒ«ãƒ¼ãƒ—ã§ã€
digitalWrite(13, HIGH); // flash LED
oled.clearDisplay(); // erase screen (0.4ms)
oled.setTextColor(WHITE); // write in white character
oled.setCursor(0, 0); //
oled.setTextSize(1); // by standerd size character
if (digitalRead(7) == HIGH) { // DC モードã ã£ãŸã‚‰ if switch is DC mode
hiZ(R_820k); // 測定æ¡ä»¶è¨å®š set measure condition
hiZ(R_82k);
hiZ(R_12k); //
volt = analogRead(0) * lsb5V; // DC電圧測定 measure voltage
oled.println(F("DC DVM 5V range")); //
oled.setCursor(20, 22); //
oled.setTextSize(2); // double size character
dtostrf(volt, 4, 2, chrBuff); // display voltage x.xxV
oled.print(chrBuff);
oled.print(F("V"));
} else { // AC モード AC mode
pull5V(R_820k); // give offset
hiZ(R_82k);
hiZ(R_12k); // Set the attenuator control pin to Hi-z (use as input)
ADCSRA = ADCSRA & 0xf8; // clear bottom 3bit
ADCSRA = ADCSRA | 0x07; // dividing ratio = 128 (default of Arduino)
for (int i = 0; i < REC_LENG; i++) { // 5msレンジã§ãƒãƒƒãƒ•ã‚¡ã«æ³¢å½¢ã‚’記録 recoord to buffer at 5ms range settings
waveBuff[i] = analogRead(0); // read and save approx 112μs
delayMicroseconds(87); // timing adjustmet tuned
}
dataAnalize(); // æ³¢å½¢ã‚’è§£æž analize data
volt = dataRms * lsb5Vac; // 実効値を計算 get RMS value
vPP = (dataMax - dataMin) * lsb5Vac; // P-P値を計算 get Peak to peak voltage
oled.println(F("AC DVM 5V range"));
oled.setTextSize(2); // double size character
dtostrf(volt, 4, 2, chrBuff); // foromat x.xx
oled.setCursor(20, 16); //
oled.print(chrBuff); // 実効値を表示 display rms voltage
oled.println(F("Vrms"));
dtostrf(vPP, 4, 2, chrBuff); // format x.xx
oled.setCursor(20, 38); //
oled.print(chrBuff); // P-P電圧を表示
oled.println(F("Vpp"));
}
oled.display(); // 実際ã«è¡¨ç¤º actual display here
digitalWrite(13, LOW); // stop LED flash
delay(150); // wait next measure
}
}
void dmm50V() { // 電圧計 5V モード digital voltmeter 5V range
float volt, vPP;
analogReference(INTERNAL);
while (1) { // ç„¡é™ãƒ«ãƒ¼ãƒ—ã§ã€forever,
digitalWrite(13, HIGH); // flash LED
oled.clearDisplay(); // erase screen (0.4ms)
oled.setTextColor(WHITE); // write in white character
oled.setCursor(0, 0); //
oled.setTextSize(1); // by standerd size character
if (digitalRead(7) == HIGH) { // DC モードã ã£ãŸã‚‰ if awitch is DC mode
hiZ(R_820k); // 測定æ¡ä»¶è¨å®š set measure condition
hiZ(R_82k);
pullGND(R_12k); //
volt = analogRead(0) * lsb50V; // DC電圧測定 measure voltage
oled.println(F("DC DVM 50V range")); //
oled.setCursor(20, 22); //
oled.setTextSize(2); // double size character
dtostrf(volt, 4, 1, chrBuff); // display voltage xx.xV
oled.print(chrBuff);
oled.print(F("V"));
} else { // AC モード AC mode
hiZ(R_820k); // 測定æ¡ä»¶è¨å®š set measure condition
pull5V(R_82k); // pull up
pullGND(R_12k); // att 10x
ADCSRA = ADCSRA & 0xf8; // clear bottom 3bit
ADCSRA = ADCSRA | 0x07; // dividing ratio = 128 (default of Arduino)
for (int i = 0; i < REC_LENG; i++) { // 5msレンジã§ãƒãƒƒãƒ•ã‚¡ã«æ³¢å½¢ã‚’記録 recoord to buffer at 5ms range settings
waveBuff[i] = analogRead(0); // read and save approx 112μs
delayMicroseconds(87); // timing adjustmet tuned
}
dataAnalize(); // æ³¢å½¢ã‚’è§£æž analize data
volt = dataRms * lsb50Vac; // 実効値を計算 get RMS value
vPP = (dataMax - dataMin) * lsb50Vac; // P-P値を計算 get Peak to peak voltage
oled.println(F("AC DVM 50V range"));
oled.setTextSize(2); // double size character
dtostrf(volt, 4, 1, chrBuff); // foromat xx.x
oled.setCursor(20, 16); //
oled.print(chrBuff); // 実効値を表示 display rms voltage
oled.println(F("Vrms"));
dtostrf(vPP, 4, 1, chrBuff); // format xx.x
oled.setCursor(20, 38); //
oled.print(chrBuff); // P-P電圧を表示
oled.println(F("Vpp"));
}
oled.display(); // 実際ã«è¡¨ç¤º actual display here
digitalWrite(13, LOW); // stop LED flash
delay(150); // wait next measure
}
}
volatile unsigned long lastMicros;
#ifdef USE_PIN2IRQ
void pin2IRQ() // æ“作スイッãƒã‚’割り込ã¿ã§èªã‚€ Pin2(int.0) interrupt handler
// Pin8,9,11,12 buttons are bundled with diodes and connected to Pin2.
// So, if any button is pressed, this routine will start.
#else
ISR(PCINT0_vect) // pin change interrupt handler
#endif
{
int x; // Port information holding variable
if ((micros() - lastMicros) < 200000) { // ignore within 200ms
goto ex;
}
x = PINB; // copy port B status
if ( (x & 0x13) != 0x13) { // if certain 3bit is not all Hi(any wer pressed)
saveTimer = 5000; // set EEPROM save timer to 5 secnd
switchPushed = true; // switch pushed falag ON
}
if ((x & 0x01) == 0) { // if select button(Pin8) pushed,
scopeP++; // forward scope position
if (scopeP > 3) { // if upper limit
scopeP = 0; // move to start position
}
}
if ((x & 0x02) == 0) { // if UP button(Pin9) pusshed, and
if (scopeP == 0) { // scoped vertical range
vRange++; // V-range up !
if (vRange > 9) { // if upper limit
vRange = 9; // stay as is
}
}
if (scopeP == 1) { // if scoped hrizontal range
hRange++; // H-range up !
if (hRange > 21) { // if upper limit
hRange = 21; // stay as is
}
}
if (scopeP == 2) { // if scoped trigger porality
trigD = 0; // set trigger porality to +
}
if (scopeP == 3) { // if scoped trigger porality
fftMode = ! fftMode; // toggle FFT mode
}
}
if ((x & 0x10) == 0) { // if DOWN button(Pin12) pusshed, and
if (scopeP == 0) { // scoped vertical range
vRange--; // V-range DOWN
if (vRange < 2) { // if bottom (レンジ番å·0,1ã¯æ¬ 番 以å‰ã¯Auto5V Auto50V)
vRange = 2; // stay as is
}
}
if (scopeP == 1) { // if scoped hrizontal range
hRange--; // H-range DOWN
if (hRange < 0) { // if bottom
hRange = 0; // satay as is
}
}
if (scopeP == 2) { // if scoped trigger porality
trigD = 1; // set trigger porality to -
}
if (scopeP == 3) { // if scoped trigger porality
fftMode = ! fftMode; // toggle FFT mode
}
}
if ((x & 0x08) == 0) { // if HOLD button(pin11) pushed
hold = ! hold; // revers the flag
}
ex:
lastMicros = micros();
}
void plotFFT() {
char *im, *re;
int ylim = 56;
re = (char *) waveBuff;
im = re + FFT_N + FFT_N;
for (int i = 0; i < FFT_N; i++) {
int d = waveBuff[i];
d = (d - 512) / 4;
d = constrain(d, -128, 127);
*re++ = d; *im++ = 0;
}
re = (char *) waveBuff;
im = re + FFT_N + FFT_N;
fix_fft(re, im, 7, 0); // full scale 2^7=128, FFT mode
for (int i = 1; i < FFT_N/2; i++) {
int dat = sqrt(re[i] * re[i] + im[i] * im[i]);
dat = constrain(dat, 0, ylim);
oled.drawFastVLine(i * 2, ylim - dat, dat, WHITE);
}
draw_scale();
}
void draw_scale() {
uint16_t ID;
int ylim = 56;
float nyquist;
oled.setCursor(0, ylim); oled.print(F("0Hz"));
nyquist = 1.0 / (pgm_read_float(hRangeValue + hRange) / 12.5); // Nyquist frequency
if (nyquist > 999.0) {
nyquist = nyquist / 1000.0;
if (nyquist > 99.5) {
oled.setCursor(58, ylim); oled.print(nyquist/2,0);oled.print(F("k"));
oled.setCursor(104, ylim); oled.print(nyquist,0);
} else if (nyquist > 9.95) {
oled.setCursor(58, ylim); oled.print(nyquist/2,0);oled.print(F("k"));
oled.setCursor(110, ylim); oled.print(nyquist,0);
} else {
oled.setCursor(52, ylim); oled.print(nyquist/2,1);oled.print(F("k"));
oled.setCursor(104, ylim); oled.print(nyquist,1);
}
oled.print(F("k"));
} else {
oled.setCursor(58, ylim); oled.print(nyquist/2,0);
oled.setCursor(110, ylim); oled.print(nyquist,0);
}
}
//void sample_us1(unsigned long r) { // analogRead() with timing, channel 0 only. 2000 =< r
// ADCSRA = (ADCSRA & 0xf8) | 0x07; // dividing ratio = 128 (default of Arduino)
// unsigned long st1 = r + r;
// unsigned long st0 = micros();
// unsigned long st = st0 + r / DOTS_DIV;
// for (int i=0; i < REC_LENG; i ++) { // up to rec buffer size
// while(micros()<st) ;
// waveBuff[i] = analogRead(0); // read and save approx 112us
// st = st0 + st1/DOTS_DIV;
// st1 += r;
// }
//}
void sample_us(unsigned long r) { // analogRead() with timing, channel 0 only. 2000 =< r
r = r / DOTS_DIV - 112; // sampling period in microsecond
ADCSRA = (ADCSRA & 0xf8) | 0x07; // dividing ratio = 128 (default of Arduino)
for (int i = 0; i < REC_LENG; i++) { // up to rec buffer size
waveBuff[i] = analogRead(0); // read and save approx 112us
delayMicroseconds(r); // timing adjustment
if (switchPushed == true) { // if any switch touched
break; // abandon record(this improve response)
}
}
}
#define PWMPin 10
#define SIMPLE_CALIB_PULSE
#ifdef SIMPLE_CALIB_PULSE
void pulse() {
pinMode(PWMPin, OUTPUT);
// TCCR1A: COM1A1, COM1A0, COM1B1, COM1B0, -, -, WGM11, 1GM10
// OC1A set on compare match, clear at BOTTOM (COM1A = 0b01)
// OC1B clear on compare match, set at BOTTOM (COM1B = 0b10)
// OCR1A Fast PWM Mode, TOP値=OCR1A (WGM11:10 = 0b11)
// TCCR1A = _BV(COM1A0) | _BV(COM1B1) | _BV(WGM11) | _BV(WGM10); // Fast PWM mode - compare to OCR1A
TCCR1A = _BV(COM1B1) | _BV(WGM11) | _BV(WGM10); // Fast PWM mode - compare to OCR1A
// TCCR1B: ICNC1, ICES1, -, WGM13, WGM12, CS12, CS11, CS10
// OCR1A Fast PWM Mode (WGM13:12 = 0b11)
// CS12:10 001:ck/1, 010:ck/8, 011:ck/64, 100:ck/256, 101:ck/1024
TCNT1 = 0x0000; // initialize TCNT1
TCCR1B = 0b00011001; // ck/1
// TOP value
OCR1A = 15999; // 1kHz = 16000000 / (15999 + 1)
// Duty ratio
OCR1B = 7999; // 50%
}
#else
float frq = 1000.0; // 0.238Hz <= frq <= 8MHz
float duty = 0.5; // 指定ã—ãŸã„デューティ比
void pulse() {
pinMode(PWMPin, OUTPUT);
// TCCR1A: COM1A1, COM1A0, COM1B1, COM1B0, -, -, WGM11, 1GM10
// OC1A normal (COM1A = 0b00)
// OC1B clear on compare match, set at BOTTOM (COM1B = 0b10)
// OCR1A Fast PWM Mode, TOP値=OCR1A (WGM11:10 = 0b11)
TCCR1A = _BV(COM1B1) | _BV(WGM11) | _BV(WGM10); // Fast PWM mode - compare to OCR1A
// TCCR1B: ICNC1, ICES1, -, WGM13, WGM12, CS12, CS11, CS10
// OCR1A Fast PWM Mode (WGM13:12 = 0b11)
// CS12:10 001:ck/1, 010:ck/8, 011:ck/64, 100:ck/256, 101:ck/1024
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // 001:ck/1 ä»®è¨å®š
// TCCR1B = 0b00011001; // ck/1
// TCCR1B = 0b00011010; // ck/8
// TCCR1B = 0b00011011; // ck/64
// TCCR1B = 0b00011100; // ck/256
// TCCR1B = 0b00011101; // ck/1024
TCNT1 = 0x0000; // TCNT1åˆæœŸåŒ–
// OCR1A = 2000; // パルス周期1ms ä»®è¨å®š
// OCR1B = 1000; // パルス幅.5ms ä»®è¨å®š
float divide;
int idiv = calcDivide(frq);
if (idiv == 0) {
frq = 8000000.0; // up to 8MHz
divide = 1.0; // ck/1
setCounter(1);
} else if (idiv == 1025) {
frq = 0.2384185791015625; // down to 0.238Hz
divide = 1024.0; // ck/1024
setCounter(1024);
} else {
divide = (float) calcDivide(frq);
setCounter(idiv);
}
// TOP値指定
OCR1A = (unsigned int)(16000000.0 / frq / divide - 1);
// Duty比指定
OCR1B = (unsigned int)(16000000.0 / frq / divide * duty - 1);
}
void setCounter(int divide) {
if (divide == 1) {
TCCR1B = 0b00011001; // ck/1
} else if (divide == 8) {
TCCR1B = 0b00011010; // ck/8
} else if (divide == 64) {
TCCR1B = 0b00011011; // ck/64
} else if (divide == 256) {
TCCR1B = 0b00011100; // ck/256
} else if (divide == 1024) {
TCCR1B = 0b00011101; // ck/1024
} else {
TCCR1B = 0b00011001; // ck/1
}
}
int calcDivide(float freq) {
if ((unsigned long)(16000000.0 / frq - 1) < 1) { // too high > 8MHz
return (0);
} else if ((unsigned long)(16000000.0 / frq - 1) < 65536L) { // ck/1 > 244.1Hz
return (1);
} else if ((unsigned long)(2000000.0 / frq - 1) < 65536L) { // ck/8 > 30.5Hz
return (8);
} else if ((unsigned long)(250000.0 / frq - 1) < 65536L) { // ck/64 > 3.81Hz
return (64);
} else if ((unsigned long)(62500.0 / frq - 1) < 65536L) { // ck/256 > 0.954Hz
return (256);
} else if ((unsigned long)(15625.0 / frq - 1) < 65536L) { // ck/1024 > 0.238Hz
return (1024);
} else { // too low < 0.238Hz
return (1025);
}
}
#endif
void trigger_level(byte tglv) {
pinMode(3, OUTPUT);
// TCCR2A: COM2A1, COM2A0, COM2B1, COM2B0, -, -, WGM21, WGM20
// OC2A No connection, normal port (COM2A = 0b00)
// OC2B clear on compare match, set at BOTTOM (COM2B = 0b10)
// OCR2A Fast PWM Mode, TOP=OCR2A (WGM21:20 = 0b11)
TCCR2A = _BV(COM2B1) | _BV(WGM21) | _BV(WGM20); // Fast PWM mode - compare to OCR2A
// TCCR2B: FOC2A, FOC2B, -, -, WGM22, CS22, CS21, CS20
// OCR2A Fast PWM Mode (WGM22 = 0b0)
// CS22:20 001:ck/1, 010:ck/8, 011:ck/64, 100:ck/256, 101:ck/1024
// TCNT2 = 0; // initialize TCNT2
TCCR2B = 0b00000001; // ck/1, TOP=255
// Duty ratio
OCR2B = tglv;
}
// Modified by Siliconvalley4066. July 23, 2021
//
// Kyutech Arduino Scope Prototype v0.73 Apr 10, 2019
// (C) 2012-2019 M.Kurata Kyushu Institute of Technology
// for Arduinos with a 5V-16MHz ATmega328.
//
// Pin usage
//
// A0 oscilloscope probe ch1
// A1 oscilloscope probe ch2
// A2 R_820k
// A3 R_82k
// A4 I2C SDA
// A5 I2C SCL
// A6 reserved
// A7 reserved
//
// D0 uart-rx
// D1 uart-tx
// D2 reserve (button press interrupt (int.0 IRQ))
// D3 PWM output for trigger level
// D4 R_12k 1/10 attenuator
// D5 FFT mode input
// D6 trigger level input
// D7 AC mode input
// D8 Select button
// D9 Up button
// D10 calibration pulse output
// D11 Hold button
// D12 Down button
// D13 LED output
byte oscspeed = 3; // 0..6:equiv
byte oscinput = 0; // input signal selection 0:CH1 1:CH2 2:DUAL
word osctdly = 800; // time of delayed trigger 100..30000 usec
byte osctvolt; // trigger level voltage (measured by adc) 0..255
byte at;
//static const struct eqdic_s {
// byte tkn;
// byte tdif;
//} eqdic[] = {
// {200, 1}, // 16Msample/s , 1.5625us/div
// {200, 2}, // 8Msample/s , 3.125us/div
// { 50, 5}, // 3.2Msample/s , 7.8125us/div
// { 50, 10}, // 1.6Msample/s , 15.625us/div
// { 20, 20}, // 800ksample/s , 31.25us/div
// { 10, 50}, // 320ksample/s , 78.125us/div
// { 5,100}, // 160ksample/s , 156.25us/div
//};
const byte tkn[] PROGMEM = {200,200,50,50,20,10,5};
const byte tdif[] PROGMEM = {1,2,5,10,20,50,100};
void modeequiv() {
byte realnum, i, dp, admux;
byte tokadif, toka, tokanum;
byte ch, chnum, vh, adch, adchT;
word ui1, waituntil, sinterval;
tokanum = pgm_read_byte(tkn + oscspeed);
waituntil = 64000;
realnum = REC_LENG / tokanum;
tokadif = pgm_read_byte(tdif + oscspeed);
sinterval = tokanum * tokadif; // 20us typical
// ADMUX reg values
admux = ADMUX & 0xf8;
switch(oscinput) {
default:
case 0x00: adch = admux + 0; chnum = 1; break; // CH1
case 0x01: adch = admux + 1; chnum = 1; break; // CH2
case 0x02: adch = admux + 0; chnum = 2; // CH1 Ch2 Dual
break;
}
adchT = admux + 0; // select CH1 for trigger
sinterval--;
at = 0;
for(toka = 0; toka < tokanum; toka++) {
dp = toka;
for(ch = 0; ch < chnum; ch++) { // for all ch (1 or 2)
// reset and initialize timer1
TCCR1B = 0x00; // stop, set normal mode
TCCR1A = 0x00;
TIMSK1 = 0x00; // no irq
ICR1 = 0x0000;
TCNT1 = 0x0000;
TIFR1 = 0x27; // clear flags;
// analog comparator setting
// The BG is the positive input.
// The negative input is A0 pin.
ACSR = 0x94; // analog comparator off
DIDR1 = 0x01; // disable the digital input func of D6.
ADMUX = adchT; // select the negative input
ADCSRA = 0x04; // divide by 16
ADCSRB = 0x40; // AC multiplexer enable, ADC auto trigger source free run
// start timer1 with pre=1/1 (16MHz)
// input capture noise canceler ON
TCCR1B = (trigD != 0) ? 0xc1 : 0x81; // edge selection
ACSR = 0x14; // capture-on, aco to caputure timer1
TIFR1 = 0x27; // clear flags again
ui1 = (tokadif * toka) + (osctdly << 4); // delay time
// falling edge detection(rising edge for ICES1)
// doesn't stabilize without a 20usec wait below.
while(TCNT1 < 320)
;
TIFR1 = 0x27;
// wait until a trigger event happens
while(true) {
if (TIFR1 & 0x20) {
// trigger event has happened.
ui1 += ICR1;
at = 0; // a trigger event has happened.
break;
}
if (TCNT1 > waituntil) {
ui1 += TCNT1;
at = 1; // trigger failed.
break;
}
}
// at:0 -> trigger event has happened, 1 -> not happened
ACSR = 0x94; // disable analog comparator
ADCSRB = 0x00; // AC multiplexer disable, ADC auto trigger source free run
ADCSRA = 0x84; // adc enable, 1MHz, adate off
TCCR1B = 0x19; // timer1 CTC-ICR1 mode pre1/1
TCCR1A = 0x00; // CTC mode;
ICR1 = ui1;
TIFR1 = 0x27; // clear flags
ADMUX = adch; // adc target is A0 pin to get trigger value;
ADCSRB = 0x07; // timer1 capture event;
ADCSRA = 0xf4; // adc auto trigger, force 1st conversion
// wait until the 1st conversion finishes.
while((ADCSRA & 0x10) == 0x00)
;
vh = ADCH; // trigger level
osctvolt = vh;
ADMUX = adch + ch;
ADCSRA = 0xb4; // clear flag, 1MHz, adate on
if (toka == 0 && ch == 0) { // needed only for the 1st loop
if (at)
return; // when trigger failed
}
for(i = 0; i < realnum; i++) {
while(true) {
if (TIFR1 & 0x20) {
ICR1 = sinterval;
TIFR1 = 0x27; // clear timer1 flags;
}
if ((ADCSRA & 0x10) != 0x00)
break;
}
byte *pdata = (byte *) &waveBuff[dp];
*pdata++ = ADCL;
*pdata = ADCH;
dp += tokanum;
ADCSRA = 0xb4; // clear flag, 1MHz, adate on
}
}
}
}