#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stm32f1xx_hal.h>
// Set STM32F103 LED RED (PC13)
#define LED_PORT GPIOB
#define LED_PIN GPIO_PIN_0
#define LED_PORT_CLK_ENABLE __HAL_RCC_GPIOC_CLK_ENABLE
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
ADC_HandleTypeDef adcHandle;
uint16_t adcValue;
/* Private function prototypes */
void SystemClock_Config(void);
void RCC_SystemClock_Config(void);
void GPIO_Output_Config(void);
void ADC_Config(void);
uint16_t ADC_Read(void);
void Error_Handler(void);
uint32_t getCurrentMicros(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
uint32_t timeOfRun = 0;
int _write(int fd, char* ptr, int len)
{
HAL_UART_Transmit(&huart2, (uint8_t *) ptr, len, HAL_MAX_DELAY);
return len;
}
void SysTick_Handler(void)
{
HAL_IncTick();
// 1 Hz blinking
if ((HAL_GetTick() % 500) == 0) {
HAL_GPIO_TogglePin(LED_PORT, LED_PIN);
}
if (HAL_GetTick() - timeOfRun >= 500) {
timeOfRun = HAL_GetTick();
printf("%ld ms\n", timeOfRun);
}
}
int main(void)
{
const char * hello_world = "Hello STM32\r\n";
/* HAL initialization */
HAL_Init();
/* Set the SYSCLK at maximum frequency (72 MHz) */
RCC_SystemClock_Config();
initGPIO();
GPIO_Output_Config();
// ADC_Config();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
HAL_UART_Transmit(&huart1, (uint8_t *)hello_world, strlen(hello_world), HAL_MAX_DELAY);
printf("Characters: %c %c\n", 'a', 65);
printf("Decimals: %d %ld\n", 1977, 650000L);
printf("Preceding with blanks: %10d\n", 1977);
printf("Preceding with zeros: %010d\n", 1977);
printf("Some different radices: %d %x %o %#x %#o\n", 100, 100, 100, 100, 100);
printf("floats: %4.2f %+.0e %E\n", 3.1416, 3.1416, 3.1416);
printf("Width trick: %*d\n", 5, 10);
printf("%s\n", "A string");
while (true)
{
// loop forever
// adcValue = ADC_Read();
// if (adcValue > 2047)
// {
// /* Turn on yellow LED */
// HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
// }
// else
// {
// /* Turn off yellow LED */
// HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET);
// }
// HAL_Delay(250);
}
return 0;
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/* Initializes the CPU, AHB and APB busses clocks */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/* Initializes the CPU, AHB and APB busses clocks */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief System clock configuration:
* System clock source = PLL (HSE)
* SYSCLK(Hz) = 72000000
* HCLK(Hz) = 72000000
* AHB prescaler = 1
* APB1 prescaler = 2
* APB2 prescaler = 1
* HSE frequency(Hz) = 8000000
* HSE PREDIV1 = 1
* PLLMUL = 9
* Flash latency(WS) = 2
* @param None
* @retval None
*/
void RCC_SystemClock_Config(void)
{
RCC_ClkInitTypeDef rccClkInit;
RCC_OscInitTypeDef rccOscInit;
/*## STEP 1: Configure HSE and PLL #######################################*/
rccOscInit.OscillatorType = RCC_OSCILLATORTYPE_HSE;
rccOscInit.HSEState = RCC_HSE_ON;
rccOscInit.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
rccOscInit.PLL.PLLState = RCC_PLL_ON;
rccOscInit.PLL.PLLSource = RCC_PLLSOURCE_HSE;
rccOscInit.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&rccOscInit) != HAL_OK)
{
Error_Handler();
}
/*## STEP 2: Configure SYSCLK, HCLK, PCLK1, and PCLK2 ####################*/
rccClkInit.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
rccClkInit.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
rccClkInit.AHBCLKDivider = RCC_SYSCLK_DIV1;
rccClkInit.APB2CLKDivider = RCC_HCLK_DIV1;
rccClkInit.APB1CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&rccClkInit, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
void initGPIO()
{
GPIO_InitTypeDef GPIO_Config;
GPIO_Config.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Config.Pull = GPIO_NOPULL;
GPIO_Config.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_Config.Pin = LED_PIN;
LED_PORT_CLK_ENABLE();
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
/* Turn on PB0 */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET);
// GPIOB -> ODR |= GPIO_PIN_0;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
}
/**
* @brief GPIO configuration:
* GPIO = GPIOB
* Pin = PB7, PB8, PB9
* Mode = Output push-pull
* Speed = Low
* @param None
* @retval None
*/
void GPIO_Output_Config(void)
{
GPIO_InitTypeDef gpioInit;
/*## STEP 1: Configure RCC peripheral ####################################*/
__HAL_RCC_GPIOB_CLK_ENABLE();
/*## STEP 2: Configure GPIO ##############################################*/
gpioInit.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9;
gpioInit.Mode = GPIO_MODE_OUTPUT_PP;
gpioInit.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &gpioInit);
}
/**
* @brief ADC configuration:
* ADC = ADC1
* Data align = Align right
* Scan mode = Disable
* Continuous conversion = Disable
* External trigger = Software start
* Channel = Channel 0
* Channel rank = 1
* Channel sampling time = 1.5 cycle
* @param None
* @retval None
*/
void ADC_Config(void)
{
ADC_ChannelConfTypeDef adcChannelConf;
/*## STEP 1: Configure ADC ###############################################*/
adcHandle.Instance = ADC1;
adcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
adcHandle.Init.ScanConvMode = ADC_SCAN_DISABLE;
adcHandle.Init.ContinuousConvMode = DISABLE;
adcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
if (HAL_ADC_Init(&adcHandle) != HAL_OK)
{
Error_Handler();
}
/* Configure ADC channel */
adcChannelConf.Channel = ADC_CHANNEL_0;
adcChannelConf.Rank = ADC_REGULAR_RANK_1;
adcChannelConf.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&adcHandle, &adcChannelConf) != HAL_OK)
{
Error_Handler();
}
/*## STEP 2 [OPTIONAL]: Run ADC calibration ##############################*/
if (HAL_ADCEx_Calibration_Start(&adcHandle) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC MSP configuration callback.
* @param None
* @retval None
*/
void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
RCC_PeriphCLKInitTypeDef rccPeriphCLKInit;
GPIO_InitTypeDef gpioInit;
/*## STEP 1: Configure RCC peripheral ####################################*/
/* Configure ADC clock prescaler */
__HAL_RCC_ADC1_CLK_ENABLE();
rccPeriphCLKInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
rccPeriphCLKInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
HAL_RCCEx_PeriphCLKConfig(&rccPeriphCLKInit);
/* Configure RCC for GPIO */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*## STEP 2: Configure GPIO ##############################################*/
/* Configure PA0 for ADC input */
gpioInit.Pin = GPIO_PIN_0;
gpioInit.Mode = GPIO_MODE_ANALOG;
gpioInit.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &gpioInit);
}
/**
* @brief Read ADC value from ADC data register.
* @param None
* @retval uint32_t: adcVal
*/
uint16_t ADC_Read(void)
{
uint16_t adcVal;
/* Enable ADC and start ADC conversion */
HAL_ADC_Start(&adcHandle);
/* Wait for ADC conversion to be completed */
HAL_ADC_PollForConversion(&adcHandle, 1);
/* Get ADC value from ADC data register */
adcVal = HAL_ADC_GetValue(&adcHandle);
/* Stop ADC conversion and disable ADC */
HAL_ADC_Stop(&adcHandle);
return adcVal;
}
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void Error_Handler(void)
{
/* Turn red LED on */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);
while (1);
}
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/* Configure the SysTick to have interrupt in 1ms time basis */
HAL_SYSTICK_Config(SystemCoreClock /1000);
/* Configure the SysTick IRQ priority */
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0);
/* Return function status */
return HAL_OK;
}
static inline uint32_t LL_SYSTICK_IsActiveCounterFlag(void)
{
return ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == (SysTick_CTRL_COUNTFLAG_Msk));
}
uint32_t getCurrentMicros(void)
{
/* Ensure COUNTFLAG is reset by reading SysTick control and status register */
LL_SYSTICK_IsActiveCounterFlag();
uint32_t m = HAL_GetTick();
const uint32_t tms = SysTick->LOAD + 1;
__IO uint32_t u = tms - SysTick->VAL;
if (LL_SYSTICK_IsActiveCounterFlag()) {
m = HAL_GetTick();
u = tms - SysTick->VAL;
}
return (m * 1000 + (u * 1000) / tms);
}
Loading
stm32-bluepill
stm32-bluepill