// https://www.reddit.com/r/FastLED/comments/18k0ofd/twinklefox_multiple_sections/

#include "FastLED.h"


#define NUM_LEDS 344
#define LED_TYPE WS2812B
#define COLOR_ORDER GRB
#define DATA_PIN 6
//#define CLK_PIN 4
#define VOLTS 5
#define MAX_MA 5000

// TwinkleFOX: Twinkling 'holiday' lights that fade in and out.
// Colors are chosen from a palette; a few palettes are provided.
//
// This December 2015 implementation improves on the December 2014 version
// in several ways:
// - smoother fading, compatible with any colors and any palettes
// - easier control of twinkle speed and twinkle density
// - supports an optional 'background color'
// - takes even less RAM: zero RAM overhead per pixel
// - illustrates a couple of interesting techniques (uh oh...)
//
// The idea behind this (new) implementation is that there's one
// basic, repeating pattern that each pixel follows like a waveform:
// The brightness rises from 0..255 and then falls back down to 0.
// The brightness at any given point in time can be determined as
// as a function of time, for example:
// brightness = sine( time ); // a sine wave of brightness over time
//
// So the way this implementation works is that every pixel follows
// the exact same wave function over time. In this particular case,
// I chose a sawtooth triangle wave (triwave8) rather than a sine wave,
// but the idea is the same: brightness = triwave8( time ).
//
// Of course, if all the pixels used the exact same wave form, and
// if they all used the exact same 'clock' for their 'time base', all
// the pixels would brighten and dim at once -- which does not look
// like twinkling at all.
//
// So to achieve random-looking twinkling, each pixel is given a
// slightly different 'clock' signal. Some of the clocks run faster,
// some run slower, and each 'clock' also has a random offset from zero.
// The net result is that the 'clocks' for all the pixels are always out
// of sync from each other, producing a nice random distribution
// of twinkles.
//
// The 'clock speed adjustment' and 'time offset' for each pixel
// are generated randomly. One (normal) approach to implementing that
// would be to randomly generate the clock parameters for each pixel
// at startup, and store them in some arrays. However, that consumes
// a great deal of precious RAM, and it turns out to be totally
// unnessary! If the random number generate is 'seeded' with the
// same starting value every time, it will generate the same sequence
// of values every time. So the clock adjustment parameters for each
// pixel are 'stored' in a pseudo-random number generator! The PRNG
// is reset, and then the first numbers out of it are the clock
// adjustment parameters for the first pixel, the second numbers out
// of it are the parameters for the second pixel, and so on.
// In this way, we can 'store' a stable sequence of thousands of
// random clock adjustment parameters in literally two bytes of RAM.
//
// There's a little bit of fixed-point math involved in applying the
// clock speed adjustments, which are expressed in eighths. Each pixel's
// clock speed ranges from 8/8ths of the system clock (i.e. 1x) to
// 23/8ths of the system clock (i.e. nearly 3x).
//
// On a basic Arduino Uno or Leonardo, this code can twinkle 300+ pixels
// smoothly at over 50 updates per seond.
//
// -Mark Kriegsman, December 2015

CRGBArray<NUM_LEDS> leds;
CRGBSet strips[] = {
  leds(0, 149), //overhead led strip
  leds(150, 174), //figure 1
  leds(175, 198), // figure 2
  leds(199, 222), // figure 3
  leds(223, 272), // letters
  leds(273, 296), //figure 4
  leds(297, 343), // figure 5
};
#define NUM_STRIPS (sizeof(strips) / sizeof(*strips))


// Overall twinkle speed.
// 0 (VERY slow) to 8 (VERY fast).
// 4, 5, and 6 are recommended, default is 4.
#define TWINKLE_SPEED 4

// Overall twinkle density.
// 0 (NONE lit) to 8 (ALL lit at once).
// Default is 5.
#define TWINKLE_DENSITY 7

// How often to change color palettes.
#define SECONDS_PER_PALETTE 10
// Also: toward the bottom of the file is an array
// called "ActivePaletteList" which controls which color
// palettes are used; you can add or remove color palettes
// from there freely.

// Background color for 'unlit' pixels
// Can be set to CRGB::Black if desired.
CRGB gBackgroundColor = CRGB::Black;
// Example of dim incandescent fairy light background color
// CRGB gBackgroundColor = CRGB(CRGB::FairyLight).nscale8_video(16);

// If AUTO_SELECT_BACKGROUND_COLOR is set to 1,
// then for any palette where the first two entries
// are the same, a dimmed version of that color will
// automatically be used as the background color.
#define AUTO_SELECT_BACKGROUND_COLOR 1

// If COOL_LIKE_INCANDESCENT is set to 1, colors will
// fade out slighted 'reddened', similar to how
// incandescent bulbs change color as they get dim down.
#define COOL_LIKE_INCANDESCENT 1


CRGBPalette16 gCurrentPalette[NUM_STRIPS];
CRGBPalette16 gTargetPalette[NUM_STRIPS];

void setup() {
  delay( 3000 ); //safety startup delay
  FastLED.setMaxPowerInVoltsAndMilliamps( VOLTS, MAX_MA);
  FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS)
  .setCorrection(TypicalLEDStrip);

  for (auto i = 0; i < NUM_STRIPS; i++)
    chooseNextColorPaletteN(i, gTargetPalette[i]);

}


void loop()
{
  EVERY_N_SECONDS( SECONDS_PER_PALETTE ) {
    for (uint8_t i = 0; i < NUM_STRIPS; i++)
      chooseNextColorPaletteN(i, gTargetPalette[i]);
  }

  EVERY_N_MILLISECONDS( 10 ) {
    for (uint8_t i = 0; i < NUM_STRIPS; i++)
      nblendPaletteTowardPalette( gCurrentPalette[i], gTargetPalette[i], 12);
  }

  uint16_t offset = 0;
  for (auto& strip : strips) {
    drawTwinkles(strip, offset++);
  }

  FastLED.show();
}


// This function loops over each pixel, calculates the
// adjusted 'clock' that this pixel should use, and calls
// "CalculateOneTwinkle" on each pixel. It then displays
// either the twinkle color of the background color,
// whichever is brighter.
void drawTwinkles( CRGBSet& L, uint8_t strip)
{
  // "PRNG16" is the pseudorandom number generator
  // It MUST be reset to the same starting value each time
  // this function is called, so that the sequence of 'random'
  // numbers that it generates is (paradoxically) stable.
  uint16_t PRNG16 = 11337 + strip;

  uint32_t clock32 = millis();

  // Set up the background color, "bg".
  // if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
  // the current palette are identical, then a deeply faded version of
  // that color is used for the background color
  CRGB bg;
  if ( (AUTO_SELECT_BACKGROUND_COLOR == 1) &&
       (gCurrentPalette[strip][0] == gCurrentPalette[strip][1] )) {
    bg = gCurrentPalette[strip][0];
    uint8_t bglight = bg.getAverageLight();
    if ( bglight > 64) {
      bg.nscale8_video( 16); // very bright, so scale to 1/16th
    } else if ( bglight > 16) {
      bg.nscale8_video( 64); // not that bright, so scale to 1/4th
    } else {
      bg.nscale8_video( 86); // dim, scale to 1/3rd.
    }
  } else {
    bg = gBackgroundColor; // just use the explicitly defined background color
  }

  uint8_t backgroundBrightness = bg.getAverageLight();

  for ( CRGB& pixel : L) {
    PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
    uint16_t myclockoffset16 = PRNG16; // use that number as clock offset
    PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
    // use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
    uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF) >> 4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
    uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
    uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel

    // We now have the adjusted 'clock' for this pixel, now we call
    // the function that computes what color the pixel should be based
    // on the "brightness = f( time )" idea.
    CRGB c = computeOneTwinkle( myclock30, myunique8, strip);

    uint8_t cbright = c.getAverageLight();
    int16_t deltabright = cbright - backgroundBrightness;
    if ( deltabright >= 32 || (!bg)) {
      // If the new pixel is significantly brighter than the background color,
      // use the new color.
      pixel = c;
    } else if ( deltabright > 0 ) {
      // If the new pixel is just slightly brighter than the background color,
      // mix a blend of the new color and the background color
      pixel = blend( bg, c, deltabright * 8);
    } else {
      // if the new pixel is not at all brighter than the background color,
      // just use the background color.
      pixel = bg;
    }
  }
}


// This function takes a time in pseudo-milliseconds,
// figures out brightness = f( time ), and also hue = f( time )
// The 'low digits' of the millisecond time are used as
// input to the brightness wave function.
// The 'high digits' are used to select a color, so that the color
// does not change over the course of the fade-in, fade-out
// of one cycle of the brightness wave function.
// The 'high digits' are also used to determine whether this pixel
// should light at all during this cycle, based on the TWINKLE_DENSITY.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt, uint8_t strip)
{
  uint16_t ticks = ms >> (8 - TWINKLE_SPEED);
  uint8_t fastcycle8 = ticks;
  uint16_t slowcycle16 = (ticks >> 8) + salt;
  slowcycle16 += sin8( slowcycle16);
  slowcycle16 = (slowcycle16 * 2053) + 1384;
  uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);

  uint8_t bright = 0;
  if ( ((slowcycle8 & 0x0E) / 2) < TWINKLE_DENSITY) {
    bright = attackDecayWave8( fastcycle8);
  }

  uint8_t hue = slowcycle8 - salt;
  CRGB c;
  if ( bright > 0) {
    c = ColorFromPalette( gCurrentPalette[strip], hue, bright, NOBLEND);
    if ( COOL_LIKE_INCANDESCENT == 1 ) {
      coolLikeIncandescent( c, fastcycle8);
    }
  } else {
    c = CRGB::Black;
  }
  return c;
}


// This function is like 'triwave8', which produces a
// symmetrical up-and-down triangle sawtooth waveform, except that this
// function produces a triangle wave with a faster attack and a slower decay:
//
// / \
// / \
// / \
// / \
//

uint8_t attackDecayWave8( uint8_t i)
{
  if ( i < 86) {
    return i * 3;
  } else {
    i -= 86;
    return 255 - (i + (i / 2));
  }
}

// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
{
  if ( phase < 128) return;

  uint8_t cooling = (phase - 128) >> 4;
  c.g = qsub8( c.g, cooling);
  c.b = qsub8( c.b, cooling * 2);
}

// A mostly red palette with green accents and white trim.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
  CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
  CRGB::Green, CRGB::Green, CRGB::Green, CRGB::Green
};

// A mostly (dark) green palette with red berries.
#define Holly_Green 0x00580c
#define Holly_Red 0xB00402
const TProgmemRGBPalette16 Holly_p FL_PROGMEM =
{ Holly_Green, Holly_Green, Holly_Green, Holly_Green,
  Holly_Green, Holly_Green, Holly_Green, Holly_Green,
  Holly_Green, Holly_Green, Holly_Green, Holly_Green,
  Holly_Green, Holly_Green, Holly_Green, Holly_Red
};

// A red and white striped palette
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
  CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray,
  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
  CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray
};

// A mostly blue palette with white accents.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
{ CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
  CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
  CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
  CRGB::Blue, CRGB::Gray, CRGB::Gray, CRGB::Gray
};

// A pure "fairy light" palette with some brightness variations
#define HALFFAIRY ((CRGB::FairyLight & 0xFEFEFE) / 2)
#define QUARTERFAIRY ((CRGB::FairyLight & 0xFCFCFC) / 4)
const TProgmemRGBPalette16 FairyLight_p FL_PROGMEM =
{ CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight,
  HALFFAIRY, HALFFAIRY, CRGB::FairyLight, CRGB::FairyLight,
  QUARTERFAIRY, QUARTERFAIRY, CRGB::FairyLight, CRGB::FairyLight,
  CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight
};

// A palette of soft snowflakes with the occasional bright one
const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
{ 0x304048, 0x304048, 0x304048, 0x304048,
  0x304048, 0x304048, 0x304048, 0x304048,
  0x304048, 0x304048, 0x304048, 0x304048,
  0x304048, 0x304048, 0x304048, 0xE0F0FF
};

// A palette reminiscent of large 'old-school' C9-size tree lights
// in the five classic colors: red, orange, green, blue, and white.
#define C9_Red 0xB80400
#define C9_Orange 0x902C02
#define C9_Green 0x046002
#define C9_Blue 0x070758
#define C9_White 0x606820
const TProgmemRGBPalette16 RetroC9_p FL_PROGMEM =
{ C9_Red, C9_Orange, C9_Red, C9_Orange,
  C9_Orange, C9_Red, C9_Orange, C9_Red,
  C9_Green, C9_Green, C9_Green, C9_Green,
  C9_Blue, C9_Blue, C9_Blue,
  C9_White
};

// A cold, icy pale blue palette
#define Ice_Blue1 0x0C1040
#define Ice_Blue2 0x182080
#define Ice_Blue3 0x5080C0
const TProgmemRGBPalette16 Ice_p FL_PROGMEM =
{
  Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
  Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
  Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
  Ice_Blue2, Ice_Blue2, Ice_Blue2, Ice_Blue3
};


// Add or remove palette names from this list to control which color
// palettes are used, and in what order.
const TProgmemRGBPalette16* ActivePaletteList0[] = {

  //&PartyColors_p,
  &RedWhite_p,
  //&Snow_p,
  //&Holly_p,
  // &Ice_p
  //&RetroC9_p,
  //&BlueWhite_p,
  //&RainbowColors_p,
  //&FairyLight_p,
  //&RedGreenWhite_p,
};

const TProgmemRGBPalette16* ActivePaletteList1[] = {

  //&PartyColors_p,
  //&RedWhite_p,
  //&Snow_p,
  //&Holly_p,
  // &Ice_p
  &RetroC9_p,
  //&BlueWhite_p,
  //&RainbowColors_p,
  //&FairyLight_p,
  //&RedGreenWhite_p,
};

const TProgmemRGBPalette16* ActivePaletteList2[] = {

  //&PartyColors_p,
  // &RedWhite_p,
  &Snow_p,
  //&Holly_p,
  // &Ice_p
  //&RetroC9_p,
  //&BlueWhite_p,
  //&RainbowColors_p,
  //&FairyLight_p,
  //&RedGreenWhite_p,
};

const TProgmemRGBPalette16* ActivePaletteList3[] = {

  //&PartyColors_p,
  //&RedWhite_p,
  //&Snow_p,
  //&Holly_p,
  // &Ice_p
  //&RetroC9_p,
  //&BlueWhite_p,
  //&RainbowColors_p,
  //&FairyLight_p,
  &RedGreenWhite_p,
};

const TProgmemRGBPalette16* ActivePaletteList4[] = {

  //&PartyColors_p,
  // &RedWhite_p,
  //&Snow_p,
  //&Holly_p,
  // &Ice_p
  //&RetroC9_p,
  //&BlueWhite_p,
  &RainbowColors_p,
  //&FairyLight_p,
  //&RedGreenWhite_p,
};

const TProgmemRGBPalette16* ActivePaletteList5[] = {

  &PartyColors_p,
  //&RedWhite_p,
  //&Snow_p,
  //&Holly_p,
  // &Ice_p
  //&RetroC9_p,
  //&BlueWhite_p,
  //&RainbowColors_p,
  //&FairyLight_p,
  //&RedGreenWhite_p,
};

const TProgmemRGBPalette16* ActivePaletteList6[] = {

  //&PartyColors_p,
  //&RedWhite_p,
  //&Snow_p,
  //&Holly_p,
  // &Ice_p
  //&RetroC9_p,
  //&BlueWhite_p,
  //&RainbowColors_p,
  &FairyLight_p,
  //&RedGreenWhite_p,
};


const TProgmemRGBPalette16** ActivePaletteLists[] = {
  ActivePaletteList0,
  ActivePaletteList1,
  ActivePaletteList2,
  ActivePaletteList3,
  ActivePaletteList4,
  ActivePaletteList5,
  ActivePaletteList6,
};

const uint8_t ActivePaletteListLengths[] = {
  sizeof(ActivePaletteList0) / sizeof(*ActivePaletteList0),
  sizeof(ActivePaletteList1) / sizeof(*ActivePaletteList1),
  sizeof(ActivePaletteList2) / sizeof(*ActivePaletteList2),
  sizeof(ActivePaletteList3) / sizeof(*ActivePaletteList3),
  sizeof(ActivePaletteList4) / sizeof(*ActivePaletteList4),
  sizeof(ActivePaletteList5) / sizeof(*ActivePaletteList5),
  sizeof(ActivePaletteList6) / sizeof(*ActivePaletteList6),
};

void chooseNextColorPaletteN(uint8_t n, CRGBPalette16& pal) {
  static uint8_t whichPalette[] = {-1, -1, -1, -1, -1, -1, -1,};
  whichPalette[n] = addmod8(whichPalette[n], 1, ActivePaletteListLengths[n]);
  pal = (*ActivePaletteLists[n])[whichPalette[n]];
}
FPS: 0
Power: 0.00W