#include "classifier.h"
float inputFeatures[3];
Eloquent::ML::Port::RandomForest randomForest;
void setup() {
Serial.begin(115200);
}
void loop() {
float inputValue1 = 0.9;
float inputValue2 = 0.7;
float inputValue3 = 0.5;
float inputValue4 = 0.8;
inputFeatures[0] = inputValue1;
inputFeatures[1] = inputValue2;
inputFeatures[2] = inputValue3;
inputFeatures[3] = inputValue4;
Serial.print("Input: ");
Serial.println(String(inputValue1)+' | '+String(inputValue2)+' | '+String(inputValue3)+' | '+String(inputValue4));
int prediction = randomForest.predict(inputFeatures);
Serial.print("Prediction: ");
Serial.println(prediction);
const char* label = randomForest.predictLabel(inputFeatures);
Serial.print("Label: ");
Serial.println(label);
performAction(prediction);
delay(1000);
}
void performAction(int prediction) {
switch (prediction) {
case 0:
Serial.println("Action for Setosa class");
break;
case 1:
Serial.println("Action for Versicolor class");
break;
case 2:
Serial.println("Action for Virginica class");
break;
default:
Serial.println("Invalid prediction");
break;
}
}