import time
time.sleep(0.1) # Wait for USB to become ready
print("Hello, Pi Pico!")
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
from micropython import const
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)
# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
self.buffer = bytearray(self.pages * self.width)
super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR,
0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO,
self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET,
0x00,
SET_COM_PIN_CFG,
0x02 if self.width > 2 * self.height else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV,
0x80,
SET_PRECHARGE,
0x22 if self.external_vcc else 0xF1,
SET_VCOM_DESEL,
0x30, # 0.83*Vcc
# display
SET_CONTRAST,
0xFF, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP,
0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01,
): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def poweron(self):
self.write_cmd(SET_DISP | 0x01)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.buffer)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
self.write_list = [b"\x40", None] # Co=0, D/C#=1
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_data(self, buf):
self.write_list[1] = buf
self.i2c.writevto(self.addr, self.write_list)
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
import time
self.res(1)
time.sleep_ms(1)
self.res(0)
time.sleep_ms(10)
self.res(1)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(0)
self.cs(0)
self.spi.write(bytearray([cmd]))
self.cs(1)
def write_data(self, buf):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(buf)
self.cs(1)
# Display Image & text on I2C driven ssd1306 OLED display
from machine import Pin, I2C
#from ssd1306 import SSD1306_I2C
import framebuf
import math, array
import time
from random import randint
WIDTH = const(128) # oled display width
HEIGHT = const(64) # oled display height
# Explicit Method
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=400_000) # 400_000
# print(i2c.scan())
#from ssd1306 import SSD1306_I2C
oled = SSD1306_I2C(128, 64, i2c)
def blk():
oled.fill(0)
oled.show()
oled.fill(0) # Black
#oled.rect(0,0,WIDTH,HEIGHT,1,0)
#oled.ellipse(50,43,20,20,1,1) # Empty circle
oled.show()
NUM_POINTS = const(50)
POINTS_PARAMS = const(10)
P_X = const(0)
P_Y = const(1)
P_VX = const(2)
P_VY = const(3)
P_NODE = const(4)
POINTS_PER_NODE = const(20)
NUM_NODES = const(64)
NODE_SIZE = const(5)
def init_points():
global POINT, NODES
POINT = array.array('i',[0]*NUM_POINTS*POINTS_PARAMS)
NODES = array.array('i',[0]*POINTS_PER_NODE*NUM_NODES)
for index in range(NUM_POINTS):
i = index * POINTS_PARAMS
POINT[i + P_X] = randint(0,WIDTH)
POINT[i + P_Y] = randint(0,HEIGHT)
POINT[i + P_VX] = 2 * randint(0, 1) - 1
POINT[i + P_VY] = 2 * randint(0, 1) - 1
POINT[i + P_NODE] = -1
@micropython.viper
def quad(x:int,y:int,w:int,h:int):
point = ptr32(POINT)
if w < NODE_SIZE or h < NODE_SIZE: return
total = 0
for index in range(NUM_POINTS):
i = index * POINTS_PARAMS
p_x = point[i + P_X]
p_y = point[i + P_Y]
if p_x >= x and p_x <= x + w and p_y >= y and p_y <= y + h:
#oled.rect(x,y,w,h,1,0)
total += 1
if total < 8: # last node
oled.rect(x,y,w,h,1,0)
return
w = w // 2
h = h // 2
quad(x,y,w,h)
quad(x+w,y,w,h)
quad(x,y+h,w,h)
quad(x+w,y+h,w,h)
@micropython.viper
def bounce():
point = ptr32(POINT)
for index in range(NUM_POINTS):
i = index * POINTS_PARAMS
x = point[i + P_X] + point[i + P_VX]
y = point[i + P_Y] + point[i + P_VY]
if x < 0 or x > WIDTH:
point[i + P_VX] *= -1
else:
point[i + P_X] = x
if y < 0 or y > HEIGHT:
point[i + P_VY] *= -1
else:
point[i + P_Y] = y
oled.pixel(x,y,1)
def main():
for i in range(200):
ticks = time.ticks_ms()
bounce()
quad(0,0,WIDTH,HEIGHT)
diff = time.ticks_diff(time.ticks_ms(),ticks)
oled.text(str(diff),2,2,1)
oled.show()
oled.fill(0)
init_points()
main()