import time
time.sleep(0.1) # Wait for USB to become ready

print("Hello, Pi Pico!")

# MicroPython SSD1306 OLED driver, I2C and SPI interfaces

from micropython import const
import framebuf

# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)

# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
    def __init__(self, width, height, external_vcc):
        self.width = width
        self.height = height
        self.external_vcc = external_vcc
        self.pages = self.height // 8
        self.buffer = bytearray(self.pages * self.width)
        super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
        self.init_display()

    def init_display(self):
        for cmd in (
            SET_DISP | 0x00,  # off
            # address setting
            SET_MEM_ADDR,
            0x00,  # horizontal
            # resolution and layout
            SET_DISP_START_LINE | 0x00,
            SET_SEG_REMAP | 0x01,  # column addr 127 mapped to SEG0
            SET_MUX_RATIO,
            self.height - 1,
            SET_COM_OUT_DIR | 0x08,  # scan from COM[N] to COM0
            SET_DISP_OFFSET,
            0x00,
            SET_COM_PIN_CFG,
            0x02 if self.width > 2 * self.height else 0x12,
            # timing and driving scheme
            SET_DISP_CLK_DIV,
            0x80,
            SET_PRECHARGE,
            0x22 if self.external_vcc else 0xF1,
            SET_VCOM_DESEL,
            0x30,  # 0.83*Vcc
            # display
            SET_CONTRAST,
            0xFF,  # maximum
            SET_ENTIRE_ON,  # output follows RAM contents
            SET_NORM_INV,  # not inverted
            # charge pump
            SET_CHARGE_PUMP,
            0x10 if self.external_vcc else 0x14,
            SET_DISP | 0x01,
        ):  # on
            self.write_cmd(cmd)
        self.fill(0)
        self.show()

    def poweroff(self):
        self.write_cmd(SET_DISP | 0x00)

    def poweron(self):
        self.write_cmd(SET_DISP | 0x01)

    def contrast(self, contrast):
        self.write_cmd(SET_CONTRAST)
        self.write_cmd(contrast)

    def invert(self, invert):
        self.write_cmd(SET_NORM_INV | (invert & 1))

    def show(self):
        x0 = 0
        x1 = self.width - 1
        if self.width == 64:
            # displays with width of 64 pixels are shifted by 32
            x0 += 32
            x1 += 32
        self.write_cmd(SET_COL_ADDR)
        self.write_cmd(x0)
        self.write_cmd(x1)
        self.write_cmd(SET_PAGE_ADDR)
        self.write_cmd(0)
        self.write_cmd(self.pages - 1)
        self.write_data(self.buffer)


class SSD1306_I2C(SSD1306):
    def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
        self.i2c = i2c
        self.addr = addr
        self.temp = bytearray(2)
        self.write_list = [b"\x40", None]  # Co=0, D/C#=1
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.temp[0] = 0x80  # Co=1, D/C#=0
        self.temp[1] = cmd
        self.i2c.writeto(self.addr, self.temp)

    def write_data(self, buf):
        self.write_list[1] = buf
        self.i2c.writevto(self.addr, self.write_list)


class SSD1306_SPI(SSD1306):
    def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
        self.rate = 10 * 1024 * 1024
        dc.init(dc.OUT, value=0)
        res.init(res.OUT, value=0)
        cs.init(cs.OUT, value=1)
        self.spi = spi
        self.dc = dc
        self.res = res
        self.cs = cs
        import time

        self.res(1)
        time.sleep_ms(1)
        self.res(0)
        time.sleep_ms(10)
        self.res(1)
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(0)
        self.cs(0)
        self.spi.write(bytearray([cmd]))
        self.cs(1)

    def write_data(self, buf):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(1)
        self.cs(0)
        self.spi.write(buf)
        self.cs(1)

 # Display Image & text on I2C driven ssd1306 OLED display 
from machine import Pin, I2C
#from ssd1306 import SSD1306_I2C
import framebuf
import math, array
import time
from random import randint

WIDTH  = const(128)                                            # oled display width
HEIGHT = const(64)                                             # oled display height

# Explicit Method
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=400_000) # 400_000
#  print(i2c.scan())
#from ssd1306 import SSD1306_I2C
oled = SSD1306_I2C(128, 64, i2c)

def blk():
    oled.fill(0)
    oled.show()
     
oled.fill(0) # Black
#oled.rect(0,0,WIDTH,HEIGHT,1,0)
#oled.ellipse(50,43,20,20,1,1)  # Empty circle             
oled.show()

NUM_POINTS = const(50)
POINTS_PARAMS = const(10)
P_X = const(0)
P_Y = const(1)
P_VX = const(2)
P_VY = const(3)
P_NODE = const(4)

POINTS_PER_NODE = const(20)
NUM_NODES = const(64)
NODE_SIZE = const(5)

def init_points():
    global POINT, NODES
    POINT = array.array('i',[0]*NUM_POINTS*POINTS_PARAMS)
    NODES = array.array('i',[0]*POINTS_PER_NODE*NUM_NODES)
    for index in range(NUM_POINTS):
        i = index * POINTS_PARAMS
        POINT[i + P_X] = randint(0,WIDTH)
        POINT[i + P_Y] = randint(0,HEIGHT)
        POINT[i + P_VX] = 2 * randint(0, 1) - 1 
        POINT[i + P_VY] = 2 * randint(0, 1) - 1
        POINT[i + P_NODE] = -1

@micropython.viper
def quad(x:int,y:int,w:int,h:int):
    point = ptr32(POINT)
    if w < NODE_SIZE or h < NODE_SIZE: return
    total = 0
    for index in range(NUM_POINTS):
        i = index * POINTS_PARAMS
        p_x = point[i + P_X]
        p_y = point[i + P_Y]
        if p_x >= x and p_x <= x + w and p_y >= y and p_y <= y + h:    
            #oled.rect(x,y,w,h,1,0)
            total += 1
    if total < 8: # last node
        oled.rect(x,y,w,h,1,0)
        return
    w = w // 2
    h = h // 2
    quad(x,y,w,h)
    quad(x+w,y,w,h)
    quad(x,y+h,w,h)
    quad(x+w,y+h,w,h)
    
@micropython.viper
def bounce():
    point = ptr32(POINT)
    for index in range(NUM_POINTS):
        i = index * POINTS_PARAMS
        x = point[i + P_X] + point[i + P_VX]
        y = point[i + P_Y] + point[i + P_VY]
        if x < 0 or x > WIDTH:
            point[i + P_VX] *= -1
        else:
            point[i + P_X] = x
        if y < 0 or y > HEIGHT:
            point[i + P_VY] *= -1
        else:
            point[i + P_Y] = y
        oled.pixel(x,y,1)
                         

def main():
    for i in range(200):
        ticks = time.ticks_ms()
        bounce()
        quad(0,0,WIDTH,HEIGHT)
        diff = time.ticks_diff(time.ticks_ms(),ticks)
        oled.text(str(diff),2,2,1)
        oled.show()
        oled.fill(0)


init_points()
main()


BOOTSELLED1239USBRaspberryPiPico©2020RP2-8020/21P64M15.00TTT