/*
Example sketch for TFT_eSPI library.
No fonts are needed.
Draws a 3d rotating cube on the TFT screen.
Original code was found at http://forum.freetronics.com/viewtopic.php?f=37&t=5495
*/
#define BLACK 0x0000
#define WHITE 0xFFFF
#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>
#include <SPI.h>
// DEFINE SPI PINS
#define sck 13
#define mosi 11
// Initialize the TFT display
#define TFT_CS 10
#define TFT_DC 9
Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);
// Define the colors for the rainbow
#define TFT_RED 0xF800
#define TFT_ORANGE 0xFD20
#define TFT_YELLOW 0xFFE0
#define TFT_GREEN 0x07E0
#define TFT_BLUE 0x001F
#define TFT_INDIGO 0x481F
#define TFT_VIOLET 0xF81F
#include <SPI.h>
// Hardware-specific library
//TFT_CS = TFT_eSPI(); // Invoke custom library
int16_t h;
int16_t w;
int inc = -2;
float xx, xy, xz;
float yx, yy, yz;
float zx, zy, zz;
float fact;
int Xan, Yan;
int Xoff;
int Yoff;
int Zoff;
struct Point3d {
int x;
int y;
int z;
};
struct Point2d {
int x;
int y;
};
int LinestoRender; // lines to render.
int OldLinestoRender; // lines to render just in case it changes. this makes sure the old lines all get erased.
struct Line3d {
Point3d p0;
Point3d p1;
};
struct Line2d {
Point2d p0;
Point2d p1;
};
Line3d Lines[20];
Line2d Render[20];
Line2d ORender[20];
/***********************************************************************************************************************************/
/***********************************************************************************************************************************/
// Sets the global vars for the 3d transform. Any points sent through "process" will be transformed using these figures.
// only needs to be called if Xan or Yan are changed.
void SetVars(void)
{
float Xan2, Yan2, Zan2;
float s1, s2, s3, c1, c2, c3;
Xan2 = Xan / fact; // convert degrees to radians.
Yan2 = Yan / fact;
// Zan is assumed to be zero
s1 = sin(Yan2);
s2 = sin(Xan2);
c1 = cos(Yan2);
c2 = cos(Xan2);
xx = c1;
xy = 0;
xz = -s1;
yx = (s1 * s2);
yy = c2;
yz = (c1 * s2);
zx = (s1 * c2);
zy = -s2;
zz = (c1 * c2);
}
/***********************************************************************************************************************************/
// processes x1,y1,z1 and returns rx1,ry1 transformed by the variables set in SetVars()
// fairly heavy on floating point here.
// uses a bunch of global vars. Could be rewritten with a struct but not worth the effort.
void ProcessLine(struct Line2d* ret, struct Line3d vec)
{
float zvt1;
int xv1, yv1, zv1;
float zvt2;
int xv2, yv2, zv2;
int rx1, ry1;
int rx2, ry2;
int x1;
int y1;
int z1;
int x2;
int y2;
int z2;
int Ok;
x1 = vec.p0.x;
y1 = vec.p0.y;
z1 = vec.p0.z;
x2 = vec.p1.x;
y2 = vec.p1.y;
z2 = vec.p1.z;
Ok = 0; // defaults to not OK
xv1 = (x1 * xx) + (y1 * xy) + (z1 * xz);
yv1 = (x1 * yx) + (y1 * yy) + (z1 * yz);
zv1 = (x1 * zx) + (y1 * zy) + (z1 * zz);
zvt1 = zv1 - Zoff;
if (zvt1 < -5) {
rx1 = 256 * (xv1 / zvt1) + Xoff;
ry1 = 256 * (yv1 / zvt1) + Yoff;
Ok = 1; // ok we are alright for point 1.
}
xv2 = (x2 * xx) + (y2 * xy) + (z2 * xz);
yv2 = (x2 * yx) + (y2 * yy) + (z2 * yz);
zv2 = (x2 * zx) + (y2 * zy) + (z2 * zz);
zvt2 = zv2 - Zoff;
if (zvt2 < -5) {
rx2 = 256 * (xv2 / zvt2) + Xoff;
ry2 = 256 * (yv2 / zvt2) + Yoff;
} else {
Ok = 0;
}
if (Ok == 1) {
ret->p0.x = rx1;
ret->p0.y = ry1;
ret->p1.x = rx2;
ret->p1.y = ry2;
}
// The ifs here are checks for out of bounds. needs a bit more code here to "safe" lines that will be way out of whack, so they dont get drawn and cause screen garbage.
}
/***********************************************************************************************************************************/
// line segments to draw a cube. basically p0 to p1. p1 to p2. p2 to p3 so on.
void cube(void)
{
// Front Face.
Lines[0].p0.x = -50;
Lines[0].p0.y = -50;
Lines[0].p0.z = 50;
Lines[0].p1.x = 50;
Lines[0].p1.y = -50;
Lines[0].p1.z = 50;
Lines[1].p0.x = 50;
Lines[1].p0.y = -50;
Lines[1].p0.z = 50;
Lines[1].p1.x = 50;
Lines[1].p1.y = 50;
Lines[1].p1.z = 50;
Lines[2].p0.x = 50;
Lines[2].p0.y = 50;
Lines[2].p0.z = 50;
Lines[2].p1.x = -50;
Lines[2].p1.y = 50;
Lines[2].p1.z = 50;
Lines[3].p0.x = -50;
Lines[3].p0.y = 50;
Lines[3].p0.z = 50;
Lines[3].p1.x = -50;
Lines[3].p1.y = -50;
Lines[3].p1.z = 50;
// back face.
Lines[4].p0.x = -50;
Lines[4].p0.y = -50;
Lines[4].p0.z = -50;
Lines[4].p1.x = 50;
Lines[4].p1.y = -50;
Lines[4].p1.z = -50;
Lines[5].p0.x = 50;
Lines[5].p0.y = -50;
Lines[5].p0.z = -50;
Lines[5].p1.x = 50;
Lines[5].p1.y = 50;
Lines[5].p1.z = -50;
Lines[6].p0.x = 50;
Lines[6].p0.y = 50;
Lines[6].p0.z = -50;
Lines[6].p1.x = -50;
Lines[6].p1.y = 50;
Lines[6].p1.z = -50;
Lines[7].p0.x = -50;
Lines[7].p0.y = 50;
Lines[7].p0.z = -50;
Lines[7].p1.x = -50;
Lines[7].p1.y = -50;
Lines[7].p1.z = -50;
// now the 4 edge lines.
Lines[8].p0.x = -50;
Lines[8].p0.y = -50;
Lines[8].p0.z = 50;
Lines[8].p1.x = -50;
Lines[8].p1.y = -50;
Lines[8].p1.z = -50;
Lines[9].p0.x = 50;
Lines[9].p0.y = -50;
Lines[9].p0.z = 50;
Lines[9].p1.x = 50;
Lines[9].p1.y = -50;
Lines[9].p1.z = -50;
Lines[10].p0.x = -50;
Lines[10].p0.y = 50;
Lines[10].p0.z = 50;
Lines[10].p1.x = -50;
Lines[10].p1.y = 50;
Lines[10].p1.z = -50;
Lines[11].p0.x = 50;
Lines[11].p0.y = 50;
Lines[11].p0.z = 50;
Lines[11].p1.x = 50;
Lines[11].p1.y = 50;
Lines[11].p1.z = -50;
LinestoRender = 12;
OldLinestoRender = LinestoRender;
}
void setup()
{
// tft.initSPI;
h = tft.height();
w = tft.width();
tft.setRotation(1);
tft.fillScreen(ISR_BLOCK);
cube();
fact = 180 / 3.14159259; // conversion from degrees to radians.
Xoff = 240; // Position the center of the 3d conversion space into the center of the TFT screen.
Yoff = 160;
Zoff = 550; // Z offset in 3D space (smaller = closer and bigger rendering)
}
/***********************************************************************************************************************************/
void RenderImage(void)
{
// renders all the lines after erasing the old ones.
// in here is the only code actually interfacing with the OLED. so if you use a different lib, this is where to change it.
for (int i = 0; i < OldLinestoRender; i++) {
tft.drawLine(ORender[i].p0.x, ORender[i].p0.y, ORender[i].p1.x, ORender[i].p1.y, BLACK); // erase the old lines.
}
for (int i = 0; i < LinestoRender; i++) {
uint16_t color = TFT_BLUE;
if (i < 4)
color = TFT_RED;
if (i > 7)
color = TFT_GREEN;
tft.drawLine(Render[i].p0.x, Render[i].p0.y, Render[i].p1.x, Render[i].p1.y, color);
}
OldLinestoRender = LinestoRender;
}
/***********************************************************************************************************************************/
void loop()
{
// Rotate around x and y axes in 1 degree increments
Xan++;
Yan++;
Yan = Yan % 360;
Xan = Xan % 360; // prevents overflow.
SetVars(); // sets up the global vars to do the 3D conversion.
// Zoom in and out on Z axis within limits
// the cube intersects with the screen for values < 160
Zoff += inc;
if (Zoff > 500)
inc = -1; // Switch to zoom in
else if (Zoff < 160)
inc = 1; // Switch to zoom out
for (int i = 0; i < LinestoRender; i++) {
ORender[i] = Render[i]; // stores the old line segment so we can delete it later.
ProcessLine(&Render[i], Lines[i]); // converts the 3d line segments to 2d.
}
RenderImage(); // go draw it!
delay(14); // Delay to reduce loop rate (reduces flicker caused by aliasing with TFT screen refresh rate)
}