// STM32 Nucleo-L031K6 HAL Blink + printf() example
// Simulation: https://wokwi.com/projects/367244067477216257
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stm32l0xx_hal.h>
// ST Nucleo Green user LED (PB3)
#define LED_PORT GPIOB
#define LED_PIN GPIO_PIN_4
#define LED_PORT2 GPIOA
#define LED_PIN2 GPIO_PIN_8
#define Button_PORT GPIOA
#define Button_PIN GPIO_PIN_9
#define LED_PORT_CLK_ENABLE __HAL_RCC_GPIOB_CLK_ENABLE
#define BUTTON_PORT_CLK_ENABLE __HAL_RCC_GPIOA_CLK_ENABLE
#define VCP_TX_Pin GPIO_PIN_2
#define VCP_RX_Pin GPIO_PIN_15
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
static void MX_USART2_UART_Init(void);
/*
void osSystickHandler(void)
{
// 1 Hz blinking:
if ((HAL_GetTick() % 500) == 0)
{
HAL_GPIO_TogglePin(LED_PORT, LED_PIN);
}
}
*/
void initGPIO()
{
GPIO_InitTypeDef GPIO_Config;
GPIO_Config.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Config.Pull = GPIO_NOPULL;
GPIO_Config.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_Config.Pin = LED_PIN | LED_PIN2;
LED_PORT_CLK_ENABLE();
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
HAL_GPIO_Init(LED_PORT2, &GPIO_Config);
__HAL_RCC_GPIOB_CLK_ENABLE();
// Add the button pin
GPIO_Config.Pin = Button_PIN;
GPIO_Config.Mode = GPIO_MODE_INPUT;
GPIO_Config.Pull = GPIO_PULLUP; // You may need to adjust this based on your button circuitry
GPIO_Config.Speed = GPIO_SPEED_FREQ_LOW;
// Enable clock for the GPIO port
BUTTON_PORT_CLK_ENABLE();
// Initialize GPIO pin for the button
HAL_GPIO_Init(Button_PORT, &GPIO_Config);
}
int main(void)
{
HAL_Init();
SystemClock_Config();
initGPIO();
MX_USART2_UART_Init();
// printf("Hello, %s!\n", "Wokwi");
// Define a variable to store the previous button state
uint8_t prevButtonState = GPIO_PIN_SET;
while (1){
// Read the state of the button
uint8_t buttonState = HAL_GPIO_ReadPin(Button_PORT, Button_PIN);
// Check if the button is pressed (assuming active LOW)
if (buttonState == GPIO_PIN_RESET && prevButtonState == GPIO_PIN_SET)
{
HAL_GPIO_WritePin(LED_PORT, LED_PIN,1);
HAL_Delay(2500);
HAL_GPIO_WritePin(LED_PORT, LED_PIN,0);
HAL_GPIO_WritePin(LED_PORT2, LED_PIN2,1);
HAL_Delay(500);
HAL_GPIO_WritePin(LED_PORT2, LED_PIN2,0);
}
else{
printf("Hello, %s!\n", "Wokwi");
}
// Update the previous button state for debouncing
prevButtonState = buttonState;
}
return 0;
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
@brief USART2 Initialization Function
@param None
@retval None
*/
static void MX_USART2_UART_Init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA15 ------> USART2_RX
*/
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = VCP_TX_Pin | VCP_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
__HAL_RCC_USART2_CLK_ENABLE();
}
void Error_Handler(void)
{
/* User can add his own implementation to report the HAL error return state */
}
// The following makes printf() write to USART2:
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
int _write(int file, uint8_t *ptr, int len)
{
switch (file)
{
case STDOUT_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
case STDERR_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
default:
return -1;
}
return len;
}