/*
IoT-02_mp6050_dataForwarder.ino
Based on: https://eloquentarduino.com/gesture-classification/
Modified by Jordi Binefa (www.binefa.com or provisional.binefa.com)
20231212
*/
#include <Adafruit_MPU6050.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>
#define BT_I34 34
#define LED_W 19
#define LED_R 23
#define LED_Y 27
#define LED_G 32
#define FREQUENCY_HZ 60
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))
// objeto da classe Adafruit_MPU6050
Adafruit_MPU6050 mpu;
static unsigned long last_interval_ms = 0;
bool bBotoPremut(int nQuin){
delay(50);
return !digitalRead(nQuin);
}
void setup() {
Serial.begin(115200);
Serial.println(__FILE__);
pinMode(BT_I34,INPUT);
pinMode(LED_W,OUTPUT);
pinMode(LED_R,OUTPUT);
pinMode(LED_Y,OUTPUT);
pinMode(LED_G,OUTPUT);
// Try to initialize!
if (!mpu.begin()) { // if (!mpu.begin(0x68))
Serial.println("Failed to find MPU6050 chip");
while (1) {
delay(10);
}
}
Serial.println("MPU6050 Found!");
mpu.setAccelerometerRange(MPU6050_RANGE_8_G);
Serial.print("Accelerometer range set to: ");
switch (mpu.getAccelerometerRange()) {
case MPU6050_RANGE_2_G:
Serial.println("+-2G");
break;
case MPU6050_RANGE_4_G:
Serial.println("+-4G");
break;
case MPU6050_RANGE_8_G:
Serial.println("+-8G");
break;
case MPU6050_RANGE_16_G:
Serial.println("+-16G");
break;
}
mpu.setGyroRange(MPU6050_RANGE_500_DEG);
Serial.print("Gyro range set to: ");
switch (mpu.getGyroRange()) {
case MPU6050_RANGE_250_DEG:
Serial.println("+- 250 deg/s");
break;
case MPU6050_RANGE_500_DEG:
Serial.println("+- 500 deg/s");
break;
case MPU6050_RANGE_1000_DEG:
Serial.println("+- 1000 deg/s");
break;
case MPU6050_RANGE_2000_DEG:
Serial.println("+- 2000 deg/s");
break;
}
mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);
Serial.print("Filter bandwidth set to: ");
switch (mpu.getFilterBandwidth()) {
case MPU6050_BAND_260_HZ:
Serial.println("260 Hz");
break;
case MPU6050_BAND_184_HZ:
Serial.println("184 Hz");
break;
case MPU6050_BAND_94_HZ:
Serial.println("94 Hz");
break;
case MPU6050_BAND_44_HZ:
Serial.println("44 Hz");
break;
case MPU6050_BAND_21_HZ:
Serial.println("21 Hz");
break;
case MPU6050_BAND_10_HZ:
Serial.println("10 Hz");
break;
case MPU6050_BAND_5_HZ:
Serial.println("5 Hz");
break;
}
Serial.println("");
delay(100);
}
void loop() {
// String sMoviment = ",0.0,quiet";
// String sMoviment = ",1.0,accX";
// String sMoviment = ",2.0,girY";
long int liAra = millis();
static long int sliPrevi = liAra;
static bool bRepos = true, bLlegint = false, bEsperant3s = false;
sensors_event_t a, g, temp;
if(bBotoPremut(BT_I34) && bRepos){
sliPrevi = liAra;
bRepos = false;
bEsperant3s = true;
}
if(bEsperant3s){ // Espera tres segons abans de llegir
if(liAra - sliPrevi > 3000){
sliPrevi = liAra;
bEsperant3s = false;
bLlegint = true;
}
}
if(bLlegint){
if (liAra > last_interval_ms + INTERVAL_MS) {
last_interval_ms = liAra;
mpu.getEvent(&a, &g, &temp);
Serial.print("IMU: ");
Serial.print(a.acceleration.x);
Serial.print(",");
Serial.print(a.acceleration.y);
Serial.print(",");
Serial.print(a.acceleration.z);
Serial.print(",");
Serial.print(g.gyro.x);
Serial.print(",");
Serial.print(g.gyro.y);
Serial.print(",");
Serial.print(g.gyro.z);
// Serial.print(sMoviment);
Serial.print("\n");
}
if(liAra - sliPrevi > 30000){ // 30 segons de lectura
bLlegint = false;
bRepos = true;
}
}
digitalWrite(LED_R,bRepos);
digitalWrite(LED_G,bLlegint);
digitalWrite(LED_Y,bEsperant3s);
}