#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
Adafruit_SSD1306 display = Adafruit_SSD1306(128, 64, &Wire,-1);
#include "arduinoFFT.h"
arduinoFFT FFT = arduinoFFT(); // Create FFT object We then define the variables specific to the signal.
const uint16_t samples = 64; //This value MUST ALWAYS be a power of 2
double signalFrequency = 0;
const double samplingFrequency = 16000;
const uint8_t amplitude = 100;
#define SCL_INDEX 0x00
#define SCL_TIME 0x01
#define SCL_FREQUENCY 0x02
#define SCL_PLOT 0x03
double vReal[samples];
double vImag[samples];
void setup() {
Serial.begin(115200);
while(!Serial);
Serial.println("Ready");
if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C))
Serial.println(F("SSD1306 allocation failed"));
else
{ display.display(); delay(1000);}
}
void loop() {
/* Build raw data */
if (signalFrequency==0)
signalFrequency=20;
else {
signalFrequency+=100;
if (signalFrequency>20000)
signalFrequency=20;
}
// Number of signal cycles that the sampling will read
double cycles = (((samples-1) * signalFrequency) / samplingFrequency);
for (uint16_t i = 0; i < samples; i++)
{
/* Build data with positive and negative values*/
vReal[i] = int8_t((amplitude * (sin((i * (twoPi * cycles)) / samples))) / 2.0);
// vReal[i] = uint8_t((amplitude * (sin((i * (twoPi * cycles)) / samples) + 1.0)) / 2.0);
/* Build data displaced on the Y axis to include only positive values*/
/* Imaginary part must be zeroed in case of looping to avoid wrong calculations and overflows */
vImag[i] = 0.0;
}
/* Print the results of the simulated sampling according to time */
// Serial.println("Data:");
// PrintVector(vReal, samples, SCL_TIME);
/* Weigh data */
FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
// Serial.println("Weighed data:");
// PrintVector(vReal, samples, SCL_TIME);
FFT.Compute(vReal, vImag, samples, FFT_FORWARD); //Compute FFT
// Serial.println("Computed Real values:");
// PrintVector(vReal, samples, SCL_INDEX);
// Serial.println("Computed Imaginary values:");
// PrintVector(vImag, samples, SCL_INDEX);
FFT.ComplexToMagnitude(vReal, vImag, samples); // Compute magnitudes
Serial.println("Computed magnitudes:");
PrintVector(vReal, (samples >> 1), SCL_FREQUENCY);
double x = FFT.MajorPeak(vReal, samples, samplingFrequency);
Serial.println(x, 6);
//while(1); /* Run Once */
spectrum();
delay(100); /* Repeat after delay */
}
void spectrum() {
display.clearDisplay();
for (uint16_t i = 0; i < (samples >> 1); i++) {
display.fillRect(i, 64-((int)vReal[i]/amplitude), 1, 64, WHITE);
}
display.display();
}
void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType)
{
for (uint16_t i = 0; i < bufferSize; i++)
{
double abscissa;
/* Print abscissa value */
switch (scaleType)
{
case SCL_INDEX:
abscissa = (i * 1.0);
break;
case SCL_TIME:
abscissa = ((i * 1.0) / samplingFrequency);
break;
case SCL_FREQUENCY:
abscissa = ((i * 1.0 * samplingFrequency) / samples);
break;
}
Serial.print(abscissa, 6);
if(scaleType==SCL_FREQUENCY)
Serial.print("Hz");
Serial.print(" ");
Serial.println(vData[i], 4);
}
Serial.println();
}