#include <SPI.h>
const byte PIN_DATA    =  2;    
const byte PIN_LATCH   =  4;   
const byte PIN_CLOCK   =  3; 
const byte PIN_START   =  7;


class SR59516 {
  public:
    SR59516(uint8_t cs, uint16_t *ptr) {
        m_ptrData = ptr;
        
        m_cs = cs;
    }
    
    void update() {
        if (m_oldRegVal != *m_ptrData) {
            m_oldRegVal = *m_ptrData;
            digitalWrite(m_cs, LOW);
            SPI.transfer16(m_oldRegVal);  // spi hardware
            digitalWrite(m_cs, HIGH);
        }
    }
    
  private:
    uint16_t *m_ptrData = nullptr;
    uint32_t m_oldRegVal = -1;
    uint8_t m_cs;
 
};

union SrData {
    // MutualExOut you can't turn on al out, but only one
    // the 8 output. Es:
    // 1 0 0 0 | 0 0 0 0
    // 0 1 0 0 | 0 0 0 0
    // 0 0 0 0 | 0 0 0 1
    // Only one out is turn 1, all other are cleared at zero
    uint8_t mutualExOut;  // 6 extern input + 2 internal
    // noMutualExOut you can turn on all output.
    uint8_t out8 : 1;
    uint16_t fullData;
};

uint16_t g_data;
SR59516 sr16(4, &g_data);

uint8_t pins[] = {0, 1, 2, 3};



byte      g_state;
uint16_t  g_rndNumber; // range 1000÷3000 ms
bool      g_btn0State;

byte data_cs = 255; //tutti high

void setup_cs() {
    writeShiftReg(data_cs);
}

void cs(byte bit, bool val) {
    if (val)
      data_cs |= (1 << bit);
    else
      data_cs &= ~(1 << bit);
    
    writeShiftReg(data_cs);
}

struct timer_t {
  uint32_t oneSec;
  uint16_t oneSecInt;
  uint32_t timer0;
  uint32_t saveMillis;
  
} timer;



uint32_t g_us;
byte g_testResult;
uint16_t g_595data;

void set16(uint16_t &data, uint8_t bit, bool tf) {
    if (tf)
      data |= (1 << bit);
    else
      data &= ~(1 << bit);
}



void setup() {
 
  Serial.begin(115200);
  pinMode(PIN_START, INPUT_PULLUP);
  SPI.begin();
   
  pinMode(PIN_LATCH, OUTPUT);
  pinMode(5, OUTPUT);
  //pinMode(PIN_DATA, OUTPUT);
  //pinMode(PIN_CLOCK, OUTPUT);
  digitalWrite(5, HIGH);
  digitalWrite(PIN_LATCH, HIGH);
  for (byte pin = 0; pin < 16; pin++) {
      set16(g_data, pin, true);
      sr16.update();
      delay(100);
      set16(g_data, pin, false);
      sr16.update();
      delay(100);

  }
  return;
  for (byte pin = 0; pin < 16; pin++) {
      
      wReg(PIN_LATCH, pin, true);
      delay(30);
      wReg(PIN_LATCH, pin, false);
      delay(30);

  }
  for (int8_t pin = 15; pin > -1; pin--) {
      
      wReg(PIN_LATCH, pin, true);
      delay(30);
      wReg(PIN_LATCH, pin, false);
      delay(30);

  }
  //wReg(PIN_LATCH, 0, true);
  //wReg(5, 2);
  /*digitalWrite(PIN_LATCH, LOW);
  SPI.transfer(1);
  SPI.transfer(0);
  digitalWrite(PIN_LATCH, HIGH);
  SPI.transfer(2);
  digitalWrite(PIN_LATCH, LOW);
  SPI.transfer(1);
  digitalWrite(PIN_LATCH, HIGH);*/

  //writeShiftReg(85);
  delay(1000);
  /*
  digitalWrite(PIN_LATCH, LOW);
  SPI.transfer(0);
  digitalWrite(PIN_LATCH, HIGH);
  //writeShiftReg(0);*/

}

void wReg(byte pinLatch, byte pin, bool val)
{
    if (val) {
      g_595data |= (1<<pin); 
    } else {
      g_595data &= ~(1<<pin); 
    }
    digitalWrite(pinLatch, LOW);
    SPI.transfer16(g_595data);  // spi hardware
    //shiftOut(PIN_DATA, PIN_CLOCK, MSBFIRST, data); spi software
    digitalWrite(pinLatch, HIGH);
}
// writeShiftReg usa la SPI hardware
// la chiamata writeShiftReg(byte data) consuma 148us
void writeShiftReg(byte data)
{
   digitalWrite(PIN_LATCH, LOW);
   SPI.transfer(data);  // spi hardware
   //shiftOut(PIN_DATA, PIN_CLOCK, MSBFIRST, data); spi software
   digitalWrite(PIN_LATCH, HIGH);
}



void loop() { 
    
}
uno:A5.2
uno:A4.2
uno:AREF
uno:GND.1
uno:13
uno:12
uno:11
uno:10
uno:9
uno:8
uno:7
uno:6
uno:5
uno:4
uno:3
uno:2
uno:1
uno:0
uno:IOREF
uno:RESET
uno:3.3V
uno:5V
uno:GND.2
uno:GND.3
uno:VIN
uno:A0
uno:A1
uno:A2
uno:A3
uno:A4
uno:A5
74HC595
sr1:Q1
sr1:Q2
sr1:Q3
sr1:Q4
sr1:Q5
sr1:Q6
sr1:Q7
sr1:GND
sr1:Q7S
sr1:MR
sr1:SHCP
sr1:STCP
sr1:OE
sr1:DS
sr1:Q0
sr1:VCC
led1:A
led1:C
led2:A
led2:C
led3:A
led3:C
led4:A
led4:C
led5:A
led5:C
led6:A
led6:C
led7:A
led7:C
led8:A
led8:C
btn1:1.l
btn1:2.l
btn1:1.r
btn1:2.r
gnd1:GND
74HC595
sr2:Q1
sr2:Q2
sr2:Q3
sr2:Q4
sr2:Q5
sr2:Q6
sr2:Q7
sr2:GND
sr2:Q7S
sr2:MR
sr2:SHCP
sr2:STCP
sr2:OE
sr2:DS
sr2:Q0
sr2:VCC
led9:A
led9:C
led10:A
led10:C
led11:A
led11:C
led12:A
led12:C
led13:A
led13:C
led14:A
led14:C
led15:A
led15:C
led16:A
led16:C