#include <SPI.h>
const byte PIN_DATA = 2;
const byte PIN_LATCH = 4;
const byte PIN_CLOCK = 3;
const byte PIN_START = 7;
class SR59516 {
public:
SR59516(uint8_t cs, uint16_t *ptr) {
m_ptrData = ptr;
m_cs = cs;
}
void update() {
if (m_oldRegVal != *m_ptrData) {
m_oldRegVal = *m_ptrData;
digitalWrite(m_cs, LOW);
SPI.transfer16(m_oldRegVal); // spi hardware
digitalWrite(m_cs, HIGH);
}
}
private:
uint16_t *m_ptrData = nullptr;
uint32_t m_oldRegVal = -1;
uint8_t m_cs;
};
union SrData {
// MutualExOut you can't turn on al out, but only one
// the 8 output. Es:
// 1 0 0 0 | 0 0 0 0
// 0 1 0 0 | 0 0 0 0
// 0 0 0 0 | 0 0 0 1
// Only one out is turn 1, all other are cleared at zero
uint8_t mutualExOut; // 6 extern input + 2 internal
// noMutualExOut you can turn on all output.
uint8_t out8 : 1;
uint16_t fullData;
};
uint16_t g_data;
SR59516 sr16(4, &g_data);
uint8_t pins[] = {0, 1, 2, 3};
byte g_state;
uint16_t g_rndNumber; // range 1000÷3000 ms
bool g_btn0State;
byte data_cs = 255; //tutti high
void setup_cs() {
writeShiftReg(data_cs);
}
void cs(byte bit, bool val) {
if (val)
data_cs |= (1 << bit);
else
data_cs &= ~(1 << bit);
writeShiftReg(data_cs);
}
struct timer_t {
uint32_t oneSec;
uint16_t oneSecInt;
uint32_t timer0;
uint32_t saveMillis;
} timer;
uint32_t g_us;
byte g_testResult;
uint16_t g_595data;
void set16(uint16_t &data, uint8_t bit, bool tf) {
if (tf)
data |= (1 << bit);
else
data &= ~(1 << bit);
}
void setup() {
Serial.begin(115200);
pinMode(PIN_START, INPUT_PULLUP);
SPI.begin();
pinMode(PIN_LATCH, OUTPUT);
pinMode(5, OUTPUT);
//pinMode(PIN_DATA, OUTPUT);
//pinMode(PIN_CLOCK, OUTPUT);
digitalWrite(5, HIGH);
digitalWrite(PIN_LATCH, HIGH);
for (byte pin = 0; pin < 16; pin++) {
set16(g_data, pin, true);
sr16.update();
delay(100);
set16(g_data, pin, false);
sr16.update();
delay(100);
}
return;
for (byte pin = 0; pin < 16; pin++) {
wReg(PIN_LATCH, pin, true);
delay(30);
wReg(PIN_LATCH, pin, false);
delay(30);
}
for (int8_t pin = 15; pin > -1; pin--) {
wReg(PIN_LATCH, pin, true);
delay(30);
wReg(PIN_LATCH, pin, false);
delay(30);
}
//wReg(PIN_LATCH, 0, true);
//wReg(5, 2);
/*digitalWrite(PIN_LATCH, LOW);
SPI.transfer(1);
SPI.transfer(0);
digitalWrite(PIN_LATCH, HIGH);
SPI.transfer(2);
digitalWrite(PIN_LATCH, LOW);
SPI.transfer(1);
digitalWrite(PIN_LATCH, HIGH);*/
//writeShiftReg(85);
delay(1000);
/*
digitalWrite(PIN_LATCH, LOW);
SPI.transfer(0);
digitalWrite(PIN_LATCH, HIGH);
//writeShiftReg(0);*/
}
void wReg(byte pinLatch, byte pin, bool val)
{
if (val) {
g_595data |= (1<<pin);
} else {
g_595data &= ~(1<<pin);
}
digitalWrite(pinLatch, LOW);
SPI.transfer16(g_595data); // spi hardware
//shiftOut(PIN_DATA, PIN_CLOCK, MSBFIRST, data); spi software
digitalWrite(pinLatch, HIGH);
}
// writeShiftReg usa la SPI hardware
// la chiamata writeShiftReg(byte data) consuma 148us
void writeShiftReg(byte data)
{
digitalWrite(PIN_LATCH, LOW);
SPI.transfer(data); // spi hardware
//shiftOut(PIN_DATA, PIN_CLOCK, MSBFIRST, data); spi software
digitalWrite(PIN_LATCH, HIGH);
}
void loop() {
}
uno:A5.2
uno:A4.2
uno:AREF
uno:GND.1
uno:13
uno:12
uno:11
uno:10
uno:9
uno:8
uno:7
uno:6
uno:5
uno:4
uno:3
uno:2
uno:1
uno:0
uno:IOREF
uno:RESET
uno:3.3V
uno:5V
uno:GND.2
uno:GND.3
uno:VIN
uno:A0
uno:A1
uno:A2
uno:A3
uno:A4
uno:A5
sr1:Q1
sr1:Q2
sr1:Q3
sr1:Q4
sr1:Q5
sr1:Q6
sr1:Q7
sr1:GND
sr1:Q7S
sr1:MR
sr1:SHCP
sr1:STCP
sr1:OE
sr1:DS
sr1:Q0
sr1:VCC
led1:A
led1:C
led2:A
led2:C
led3:A
led3:C
led4:A
led4:C
led5:A
led5:C
led6:A
led6:C
led7:A
led7:C
led8:A
led8:C
btn1:1.l
btn1:2.l
btn1:1.r
btn1:2.r
gnd1:GND
sr2:Q1
sr2:Q2
sr2:Q3
sr2:Q4
sr2:Q5
sr2:Q6
sr2:Q7
sr2:GND
sr2:Q7S
sr2:MR
sr2:SHCP
sr2:STCP
sr2:OE
sr2:DS
sr2:Q0
sr2:VCC
led9:A
led9:C
led10:A
led10:C
led11:A
led11:C
led12:A
led12:C
led13:A
led13:C
led14:A
led14:C
led15:A
led15:C
led16:A
led16:C