#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>
#include <SPI.h>
#include <Button.h>
#include <math.h>
#define TFT_DC 2
#define TFT_CS 15
#define BUTTON_SIGNAL1 0 // Broche GPIO pour le bouton du signal 1
#define BUTTON_SIGNAL2 5 // Broche GPIO pour le bouton du signal 2
#define BUTTON_SIGNAL3 14 // Broche GPIO pour le bouton du signal 3
#define BUTTON_SIGNAL4 12 // Broche GPIO pour le bouton du signal 4
#define TFT_WIDTH 320
#define TFT_HEIGHT 240
Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);
Button buttonSignal1(BUTTON_SIGNAL1);
Button buttonSignal2(BUTTON_SIGNAL2);
Button buttonSignal3(BUTTON_SIGNAL3);
Button buttonSignal4(BUTTON_SIGNAL4);
volatile bool signalRequested = false;
volatile int requestedSignalNumber = 0;
volatile bool signalInProgress = false;
void setup() {
Serial.begin(9600);
tft.begin();
tft.setRotation(1);
tft.fillScreen(ILI9341_BLACK);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(3);
buttonSignal1.begin();
buttonSignal2.begin();
buttonSignal3.begin();
buttonSignal4.begin();
attachInterrupt(digitalPinToInterrupt(BUTTON_SIGNAL1), signalInterrupt, FALLING);
attachInterrupt(digitalPinToInterrupt(BUTTON_SIGNAL2), signalInterrupt, FALLING);
attachInterrupt(digitalPinToInterrupt(BUTTON_SIGNAL3), signalInterrupt, FALLING);
attachInterrupt(digitalPinToInterrupt(BUTTON_SIGNAL4), signalInterrupt, FALLING);
}
void loop() {
if (signalRequested && !signalInProgress) {
signalInProgress = true;
tft.fillScreen(ILI9341_BLACK);
switch (requestedSignalNumber) {
case 1:
drawCombinedSignal(ILI9341_YELLOW, calculateCombinedSignal1);
break;
case 2:
drawCombinedSignal(ILI9341_GREEN, calculateCombinedSignal2);
break;
case 3:
drawCombinedSignal(ILI9341_RED, calculateCombinedSignal3);
break;
case 4:
drawCombinedSignal(ILI9341_CYAN, calculateCombinedSignal4);
break;
default:
break;
}
// Ne pas réinitialiser signalRequested ici
signalInProgress = false;
}
}
void signalInterrupt() {
int button = digitalRead(BUTTON_SIGNAL1) == LOW ? 1 :
digitalRead(BUTTON_SIGNAL2) == LOW ? 2 :
digitalRead(BUTTON_SIGNAL3) == LOW ? 3 :
digitalRead(BUTTON_SIGNAL4) == LOW ? 4 : 0;
if (button != 0) {
signalRequested = true;
requestedSignalNumber = button;
}
}
void drawCombinedSignal(uint16_t color, float (*calculateSignal)(int)) {
// Votre code de dessin ici
tft.fillScreen(ILI9341_BLACK);
int startX = 0; // Position de départ de la courbe
while (startX < TFT_WIDTH) {
tft.fillScreen(ILI9341_BLACK); // Effacer l'écran après chaque itération
int x = startX;
for (; x < TFT_WIDTH - 1; x++) {
float y = calculateSignal(x);
float y_next = calculateSignal(x + 1);
tft.drawLine(x, y, x + 1, y_next, color);
// Vérifier si une nouvelle demande de signal est intervenue pendant le dessin
if (signalRequested && requestedSignalNumber != (calculateSignal == calculateCombinedSignal1 ? 1 :
calculateSignal == calculateCombinedSignal2 ? 2 :
calculateSignal == calculateCombinedSignal3 ? 3 : 4)) {
return;
}
}
}
}
float calculateCombinedSignal1(int x) {
float s = 0;
int offset = 1;
while (true) { // Boucle infinie
float onde_P = -(1 / 0.4) * exp(-pow((x - 20 - offset), 2) / pow(8, 2));
float onde_Q = (1.4 / 0.4) * exp(-pow((x - 42 - offset), 2) / 1.5);
float onde_R = -(4 / 0.2) * exp(-pow((x - 47.35 - offset), 2) / pow(2.5, 2));
float onde_S = (1 / 0.2) * exp(-pow((x - 50.9 - offset), 2) / pow(1.5, 2));
float onde_T = -(1 / 0.3) * exp(-pow((x - 85 - offset), 2) / 80);
s += (onde_P + onde_Q + onde_R + onde_S + onde_T);
offset += 120;
// Sortir de la boucle si nécessaire
if (offset > 1000) {
break; // Sortir de la boucle infinie lorsque offset dépasse 900
}
}
// Additionner les composantes des signaux
return (s * 6) + TFT_HEIGHT / 2 + 20;
}
float calculateCombinedSignal2(int x) {
float s2 = 0;
int offset = 1;
while (true) { // Boucle infinie
float y1 = -(3.5/ 0.25) * exp(-pow((x - 15-offset), 2) / pow(4, 2));
float y2 = (7) * exp(-pow((x - 20-offset), 2) / pow(8, 2));
float y3 = -(2) * exp(-pow((x -20.2-offset), 2) / pow(6, 2));
s2+=y1+y2+y3;
offset += 100;
// Sortir de la boucle si nécessaire
if (offset > 1000) {
break; // Sortir de la boucle infinie lorsque offset dépasse 900
}
}
return 0.4 *s2* 10 + TFT_HEIGHT / 2; // Scale and shift the result for display
}
float calculateCombinedSignal3(int x) {
float s3 = 0;
int offset = 1;
while (true) { // Boucle infinie
float y1 = -(0.4 / 2.5) * exp(-pow((x - 12-offset), 2) / pow(6, 2));
float y2 = -(0.5 / 5) * exp(-pow((x - 25.5-offset), 2) / pow(3, 2));
float y3 = -(0.4 / 5) * exp(-pow((x - 35-offset), 2) / pow(2, 2));
float y4 = (0.7 / 5) * exp(-pow((x - 40-offset), 2) / pow(2, 2));
float y5 = -(0.6 / 9) * exp(-pow((x - 50-offset), 2) / 15);
float y6 = -(0.7 / 3.0) * exp(-pow((x - 60-offset), 2) / pow(12, 2));
s3+=y1 - y2 + y3 + y4 + y5 + y6;
offset += 90;
// Sortir de la boucle si nécessaire
if (offset > 1000) {
break; // Sortir de la boucle infinie lorsque offset dépasse 900
}
}
return (s3) * 15 + TFT_HEIGHT / 2;
}
float calculateCombinedSignal4(int x) {
float sum_y34 = 0;
for (int n = 1; n <= 400; n += 15) {
float y3 = -(3.0 / 0.2) * exp(-pow((x - (5 + n)), 2) / pow(2, 2));
float y4 = (0.8) * exp(-pow((x - (8 + n) ), 2) / pow(9,2));
sum_y34 += y3 + y4;
}
return (sum_y34 * 5) + TFT_HEIGHT / 2;
}