#include <TensorFlowLite_ESP32.h>
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "model_data.cpp" // Include the generated model data source file
// Define TFLite model variables
extern const unsigned char model_data[];
const int model_data_len = 1372; // Update this value with the actual size of your model data
tflite::MicroErrorReporter micro_error_reporter;
tflite::AllOpsResolver resolver;
const tflite::Model* tflite_model = nullptr;
tflite::MicroInterpreter interpreter(tensor_arena, tensor_arena_size, µ_error_reporter);
constexpr int tensor_arena_size = 8 * 1024; // Adjust the size as needed
uint8_t tensor_arena[tensor_arena_size];
// Input and output tensor pointers
TfLiteTensor* input;
TfLiteTensor* output;
// Function to initialize TFLite interpreter
void setup() {
// Initialize TFLite model
tflite_model = tflite::GetModel(model_data);
if (tflite_model->version() != TFLITE_SCHEMA_VERSION) {
micro_error_reporter.Report("Model version does not match schema", 0, "");
return;
}
// Allocate memory from the tensor_arena for the model's tensors
interpreter.AllocateTensors();
// Get pointers to the input and output tensors
input = interpreter.input(0);
output = interpreter.output(0);
}
// Function to run inference on TFLite model
void loop() {
// Fetch weather data (temperature, humidity, etc.) from sensors or API
float input_data[] = {10.0, 25.0, 15.0, 5.0}; // Example weather data
// Prepare input tensor
for (int i = 0; i < input->dims->size; i++) {
input->data.f[i] = input_data[i];
}
// Run inference
interpreter.Invoke();
// Get prediction result
float prediction = output->data.f[0]; // Assuming output is a single float representing predicted class or value
// Process prediction result (display, send over serial, etc.)
// Implement your logic here based on the prediction
delay(1000); // Add delay for stability
}