#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>
#include <SPI.h>
#include <IRremote.h>
#include <math.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#define TFT_DC 2
#define TFT_CS 15
#define TFT_WIDTH 320
#define TFT_HEIGHT 240
Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);
IRrecv irReceiver(22);
volatile bool signalRequested = false;
volatile int requestedSignalNumber = 0;
volatile int speed = 0;
TaskHandle_t affichageTaskHandle[4];
float signalValues[TFT_WIDTH];
float calculateCombinedSignal1(int x) {
float s = 0;
int offset = 1;
while (offset <= 1000) {
float onde_P = -(1 / 0.4) * exp(-pow((x - 20 - offset), 2) / pow(8, 2));
float onde_Q = (1.4 / 0.4) * exp(-pow((x - 42 - offset), 2) / 1.5);
float onde_R = -(3 / 0.2) * exp(-pow((x - 47.35 - offset), 2) / pow(2.5, 2));
float onde_S = (1 / 0.2) * exp(-pow((x - 50.9 - offset), 2) / pow(1.5, 2));
float onde_T = -(1 / 0.3) * exp(-pow((x - 85 - offset), 2) / 80);
s += (onde_P + onde_Q + onde_R + onde_S + onde_T);
offset += 120;
}
return s * 4 + 60;
}
float calculateCombinedSignal2(int x) {
float s = 0;
for (int offset = 1; offset <= 1000; offset += 100) {
float y1 = -(3.5 / 0.25) * exp(-pow((x - 15 - offset), 2) / pow(4, 2));
float y2 = 7 * exp(-pow((x - 20 - offset), 2) / pow(8, 2));
float y3 = -2 * exp(-pow((x - 20.2 - offset), 2) / pow(6, 2));
s += y1 + y2 + y3;
}
return s * 0.6 * 7 + 50;
}
float calculateCombinedSignal3(int x) {
float s = 0;
for (int offset = 1; offset <= 1000; offset += 90) {
float y1 = -(0.4 / 2.5) * exp(-pow((x - 12 - offset), 2) / pow(6, 2));
float y2 = -(0.5 / 5) * exp(-pow((x - 25.5 - offset), 2) / pow(3, 2));
float y3 = -(0.4 / 5) * exp(-pow((x - 35 - offset), 2) / pow(2, 2));
float y4 = (0.7 / 5) * exp(-pow((x - 40 - offset), 2) / pow(2, 2));
float y5 = -(0.6 / 9) * exp(-pow((x - 50 - offset), 2) / 15);
float y6 = -(0.7 / 3.0) * exp(-pow((x - 60 - offset), 2) / pow(12, 2));
s += y1 - y2 + y3 + y4 + y5 + y6;
}
return s * 15 + 10;
}
float calculateCombinedSignal4(int x) {
float s = 0;
for (int n = 1; n <= 400; n += 18) {
float y3 = -(3.0 / 0.2) * exp(-pow((x - (5 + n)), 2) / pow(2, 2));
float y4 = 0.8 * exp(-pow((x - (8 + n)), 2) / pow(9, 2));
s += y3 + y4;
}
return s * 5 + 70;
}
void calculateSignalValues(float (*calculateSignal)(int)) {
for (int x = 0; x < TFT_WIDTH; x++) {
signalValues[x] = calculateSignal(x);
}
}
void drawSignal(uint16_t color) {
float maxAmplitude = -INFINITY;
float minAmplitude = INFINITY;
for (int x = 0; x < TFT_WIDTH; x++) {
maxAmplitude = max(maxAmplitude, signalValues[x]);
minAmplitude = min(minAmplitude, signalValues[x]);
}
float averageAmplitude = (maxAmplitude - minAmplitude) / 2;
float verticalOffset = TFT_HEIGHT / 2 - averageAmplitude;
for (int x = 0; x < TFT_WIDTH - 1; x++) {
float y = signalValues[x] + verticalOffset;
float y_next = signalValues[x + 1] + verticalOffset;
tft.drawLine(x, y, x + 1, y_next, color);
delay(2 + speed); // Ajout de la vitesse
}
}
void affichageTask(void *pvParameters) {
int signalNumber = *((int *)pvParameters);
while (true) {
tft.fillScreen(ILI9341_BLACK);
switch (signalNumber) {
case 48:
Serial.println("Signal 1 detected");
calculateSignalValues(calculateCombinedSignal1);
break;
case 24:
Serial.println("Signal 2 detected");
calculateSignalValues(calculateCombinedSignal2);
break;
case 122:
Serial.println("Signal 3 detected");
calculateSignalValues(calculateCombinedSignal3);
break;
case 16:
Serial.println("Signal 4 detected");
calculateSignalValues(calculateCombinedSignal4);
break;
default:
Serial.println("Unknown signal detected");
break;
}
drawSignal(ILI9341_WHITE);
delay(5); // Ajouter un délai pour limiter le rafraîchissement
}
}
void loop() {
if (irReceiver.decode()) {
unsigned long irValue = irReceiver.decodedIRData.command;
irReceiver.resume();
// Mettre à jour la vitesse lors de la détection des boutons "+" et "-"
switch (irValue) {
case 152:
if (speed < 10) {
speed++;
Serial.print("Speed increased to: ");
Serial.println(speed);
}
break;
case 2:
if (speed > -3) {
speed--;
Serial.print("Speed decreased to: ");
Serial.println(speed);
}
break;
default:
// Arrêter la tâche d'affichage précédente si elle existe
stopDisplayTask(requestedSignalNumber);
speed = 0;
// Enregistrer le nouveau signal demandé et indiquer qu'un signal est demandé
requestedSignalNumber = irValue;
signalRequested = true;
break;
}
}
if (signalRequested) {
signalRequested = false;
if (affichageTaskHandle[requestedSignalNumber - 1] == NULL) {
// Démarrer une nouvelle tâche d'affichage
xTaskCreate(affichageTask, "AffichageTask", 4096, (void *)&requestedSignalNumber, 1, &affichageTaskHandle[requestedSignalNumber - 1]);
} else {
// Si la tâche est déjà en cours, la suspendre
vTaskSuspend(affichageTaskHandle[requestedSignalNumber - 1]);
// Puis, démarrer une nouvelle tâche d'affichage
xTaskCreate(affichageTask, "AffichageTask", 4096, (void *)&requestedSignalNumber, 1, &affichageTaskHandle[requestedSignalNumber - 1]);
}
}
}
void setup() {
Serial.begin(9600);
tft.begin();
tft.setRotation(3);
tft.fillScreen(ILI9341_BLACK);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(3);
irReceiver.enableIRIn();
}
void stopDisplayTask(int signalNumber) {
if (affichageTaskHandle[signalNumber - 1] != NULL) {
vTaskSuspend(affichageTaskHandle[signalNumber - 1]);
affichageTaskHandle[signalNumber - 1] = NULL;
}
}