#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_MPU6050.h>
#include <esp_now.h>
#include <WiFi.h>
Adafruit_MPU6050 mpu;
int16_t ax, ay, az;
float wave_height, sendWave;
//ESP NOW
uint8_t broadcastAddress[] = {0x24, 0x0A, 0xC4, 0x00, 0x01, 0x00};
typedef struct struct_message {
float waveHeight;
} struct_message;
struct_message myData;
esp_now_peer_info_t peerInfo;
void setup() {
Serial.begin(115200);
WiFi.mode(WIFI_STA);
if (esp_now_init() != ESP_OK) {
Serial.println("Error initializing ESP-NOW");
return;
}
//esp_now_register_send_cb(OnDataSent);
// Register peer
memcpy(peerInfo.peer_addr, broadcastAddress, 6);
peerInfo.channel = 0;
peerInfo.encrypt = false;
// Add peer
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
Serial.println("Failed to add peer");
return;
}
while (!Serial)
delay(10);
Serial.println("Adafruit MPU6050 test!");
if (!mpu.begin()) {
Serial.println("Failed to find MPU6050 chip");
while (1) {
delay(10);
}
}
Serial.println("MPU6050 Found!");
mpu.setAccelerometerRange(MPU6050_RANGE_8_G);
Serial.print("Accelerometer range set to: ");
switch (mpu.getAccelerometerRange()) {
case MPU6050_RANGE_2_G:
Serial.println("+-2G");
break;
case MPU6050_RANGE_4_G:
Serial.println("+-4G");
break;
case MPU6050_RANGE_8_G:
Serial.println("+-8G");
break;
case MPU6050_RANGE_16_G:
Serial.println("+-16G");
break;
}
mpu.setGyroRange(MPU6050_RANGE_500_DEG);
Serial.print("Gyro range set to: ");
switch (mpu.getGyroRange()) {
case MPU6050_RANGE_250_DEG:
Serial.println("+- 250 deg/s");
break;
case MPU6050_RANGE_500_DEG:
Serial.println("+- 500 deg/s");
break;
case MPU6050_RANGE_1000_DEG:
Serial.println("+- 1000 deg/s");
break;
case MPU6050_RANGE_2000_DEG:
Serial.println("+- 2000 deg/s");
break;
}
mpu.setFilterBandwidth(MPU6050_BAND_5_HZ);
Serial.print("Filter bandwidth set to: ");
switch (mpu.getFilterBandwidth()) {
case MPU6050_BAND_260_HZ:
Serial.println("260 Hz");
break;
case MPU6050_BAND_184_HZ:
Serial.println("184 Hz");
break;
case MPU6050_BAND_94_HZ:
Serial.println("94 Hz");
break;
case MPU6050_BAND_44_HZ:
Serial.println("44 Hz");
break;
case MPU6050_BAND_21_HZ:
Serial.println("21 Hz");
break;
case MPU6050_BAND_10_HZ:
Serial.println("10 Hz");
break;
case MPU6050_BAND_5_HZ:
Serial.println("5 Hz");
break;
}
Serial.println("");
delay(100);
}
void loop() {
/* Get new sensor events with the readings */
sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);
float ax = a.acceleration.x ;
float ay = a.acceleration.y ;
float az = a.acceleration.z ;
float gyX = g.gyro.x ;
float gyY = g.gyro.y ;
float gyZ = g.gyro.z ;
// Hitung magnitudo akselerasi
double acceleration_magnitude = sqrt(ax * ax + ay * ay + az * az);
double PGA = acceleration_magnitude * 8;
// Kecepatan sudut
double kecepatanSudut = sqrt(gyX * gyX + gyY * gyY + gyZ * gyZ) * 0.0175; // Konversi ke rad/sec
// Tinggi gelombang
double tinggiGelombang = acceleration_magnitude / kecepatanSudut * kecepatanSudut ;
Serial.print("akselerasi = ");
Serial.println(acceleration_magnitude);
Serial.print("Kecepatan sudut = ");
Serial.println(kecepatanSudut);
Serial.print("tinggi gelombang = ");
Serial.println(tinggiGelombang);
Serial.print("PGA = ");
Serial.println(PGA);
Serial.println( __TIME__;);
// // Perkiraan akselerasi vertikal (akibat gelombang)
// double vertical_acceleration_estimate = acceleration_magnitude - abs(az);
// // Tentukan puncak dan lembah gelombang
// static double last_acceleration = 0.0;
// static bool is_crest = false;
// static bool is_trough = false;
// if (vertical_acceleration_estimate > last_acceleration && !is_crest) {
// is_crest = true;
// Serial.println("Crest detected");
// } else if (vertical_acceleration_estimate < last_acceleration && is_crest) {
// is_trough = true;
// Serial.println("Trough detected");
// // Hitung tinggi gelombang
// if (is_trough && is_crest) {
// wave_height = vertical_acceleration_estimate - last_acceleration;
// Serial.print("Wave Height: ");
// Serial.print(abs(wave_height));
// Serial.println(" m");
// is_trough = false;
// is_crest = false;
// }
// }
// last_acceleration = vertical_acceleration_estimate;
// Serial.print("Acceleration X: ");
// Serial.print(a.acceleration.x);
// Serial.print(", Y: ");
// Serial.print(a.acceleration.y);
// Serial.print(", Z: ");
// Serial.print(a.acceleration.z);
// Serial.println(" m/s^2");
delay(2000);
}