#include <Arduino.h>
#include <TensorFlowLite_ESP32.h>
#include <img_converters.h>
// Load the TFLite model
const unsigned char model_data[] = {your_model_data};
// TensorFlow Lite model and interpreter
TfLiteModel* model = NULL;
TfLiteInterpreter* interpreter = NULL;
TfLiteTensor* input = NULL;
TfLiteTensor* output = NULL;
void setup() {
Serial.begin(9600);
Serial.println("Program started");
// Initialize TensorFlow Lite model
model = tflite::GetModel(model_data);
if (model == NULL) {
Serial.println("Failed to load model");
while (1);
}
// Create an interpreter to run the model
static tflite::MicroErrorReporter micro_error_reporter;
static tflite::ops::micro::AllOpsResolver resolver;
static tflite::MicroInterpreter static_interpreter(model, resolver, tensor_arena, kTensorArenaSize, µ_error_reporter);
interpreter = &static_interpreter;
// Allocate memory for the model
if (interpreter->AllocateTensors() != kTfLiteOk) {
Serial.println("Failed to allocate tensors");
while (1);
}
// Get pointers to the input and output tensors
input = interpreter->input(0);
output = interpreter->output(0);
Serial.println("TensorFlow Lite model loaded and interpreter created");
}
void loop() {
// Assuming you have an image in the system files, load it here
// Simulating the image capture
uint8_t resized_img[224 * 224];
// Simulating image conversion
// For simplicity, let's assume the image is already in the correct format and size
// You may need to adjust this part according to your actual image loading process
// Run inference on the resized image
run_inference(resized_img);
// Delay for a while before next inference
delay(1000);
}
void run_inference(uint8_t* input_data) {
// Set input tensor data
memcpy(input->data.uint8, input_data, input->bytes);
// Run inference
if (interpreter->Invoke() != kTfLiteOk) {
Serial.println("Failed to invoke interpreter");
return;
}
// Get output tensor data
float* predictions = output->data.f;
// Print the inference result
Serial.println("Inference result:");
for (int i = 0; i < 10; i++) {
Serial.print(i);
Serial.print(": ");
Serial.println(predictions[i]);
}
}