#include <WiFi.h>
#include <PubSubClient.h>
#include <DHT.h>
#define DHTPIN 25
#define pinLDR 34
#define AC 5
#define Humidifier 18
#define Lampu 19
const float GAMMA = 0.7;
const float RL10 = 33;
#define DHTTYPE DHT22
DHT dht(DHTPIN, DHTTYPE);
// Update these with values suitable for your network.
const char* ssid = "Wokwi-GUEST";
const char* password = "";
const char* mqtt_server = "test.mosquitto.org";
const char* username = "";
const char* pass = "";
char str_hum_data[10];
char str_temp_data[10];
char str_ldr_data[8];
WiFiClient espClient;
PubSubClient client(espClient);
unsigned long lastMsg = 0;
#define MSG_BUFFER_SIZE (50)
char msg[MSG_BUFFER_SIZE];
int value = 0;
int ac;
int lampu;
int humidifier;
#define sub1 "caesar/room/lampu"
#define sub2 "caesar/room/AC"
#define sub3 "caesar/room/humidifier"
void setup_wifi() {
delay(10);
// We start by connecting to a WiFi network
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
randomSeed(micros());
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
void callback(char* topic, byte* payload, unsigned int length) {
Serial.print("Message arrived [");
Serial.print(topic);
Serial.print("] ");
if (strstr(topic, sub1)) //Button 1
{
for (int i = 0; i < length; i++) {
Serial.print((char)payload[i]);
int lampu = (char)payload[i];
if (lampu == '1') {
digitalWrite(Lampu, HIGH); // Menyalakan LED
}else if (lampu == '0') {
digitalWrite(Lampu, LOW); // Mematikan LED
}
}
Serial.println();
}
if (strstr(topic, sub2)) //Button 2
{
for (int i = 0; i < length; i++) {
Serial.print((char)payload[i]);
int ac = (char)payload[i];
if (ac == '1') {
digitalWrite(AC, HIGH); // Menyalakan AC
}else if (ac == '0') {
digitalWrite(AC, LOW); // Mematikan AC
}
}
Serial.println();
}
if (strstr(topic, sub3)) //Button 3
{
for (int i = 0; i < length; i++) {
Serial.print((char)payload[i]);
int humidifier = (char)payload[i];
if (humidifier == '1') {
digitalWrite(Humidifier, HIGH); // Menyemprot Humidifier
}else if (humidifier == '0') {
digitalWrite(Humidifier, LOW); // Mematikan Humidifier
}
}
Serial.println();
}
}
void reconnect() {
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
String clientId = "ESP8266Client-";
clientId += String(random(0xffff), HEX);
// Attempt to connect
if (client.connect(clientId.c_str(), username, pass) ) {
Serial.println("connected");
client.subscribe(sub1);
client.subscribe(sub2);
client.subscribe(sub3);
} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
// Wait 5 seconds before retrying
delay(5000);
}
}
}
void setup() {
Serial.begin(115200);
Serial.println("Hello, Caesar");
pinMode(AC, OUTPUT);
pinMode(Humidifier, OUTPUT);
pinMode(Lampu, OUTPUT);
dht.begin();
setup_wifi();
client.setServer(mqtt_server, 1883);
client.setCallback(callback);
}
void loop() {
SensorLDR();
if (!client.connected()) {
reconnect();
}
client.loop();
unsigned long now = millis();
if (now - lastMsg > 2000) {
float ldr_data = SensorLDR();
float hum_data = dht.readHumidity();
Serial.println(hum_data);
/* 4 is mininum width, 2 is precision; float value is copied onto str_sensor*/
dtostrf(hum_data, 4, 2, str_hum_data);
float temp_data = dht.readTemperature(); // or dht.readTemperature(true) for Fahrenheit
dtostrf(temp_data, 4, 2, str_temp_data);
dtostrf(ldr_data, 4, 2, str_ldr_data);
lastMsg = now;
Serial.println("Publish message: ");
Serial.print("Temperature: "); Serial.println(str_temp_data);
client.publish("caesar/room/suhu", str_temp_data);
Serial.print("Humidity: "); Serial.println(str_hum_data);
client.publish("caesar/room/hum", str_hum_data);
Serial.print("Lux: "); Serial.println(ldr_data);
client.publish("caesar/room/ldr", str_ldr_data);
}
}
float SensorLDR() {
int analogValue = analogRead(pinLDR);
float voltage = analogValue / 4096. * 3.3;
float resistance = 2000 * voltage / (1 - voltage / 3.3);
float lux = pow(RL10 * 1e3 * pow(10, GAMMA) / resistance, (1 / GAMMA));
return lux;
}