/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "CLCD.h"
#include <stdio.h>
#include <string.h>
CLCD_Name LCD1;
uint8_t count;
char LCD_send[30];
char UART_send[20];
uint32_t soilADCValue=0;
//uint32_t value=0;
float soilADCPercent = 0.0;
float soilValue=0.0;
uint8_t buttonState1=0;
uint8_t buttonState2=0;
uint32_t previousMillis = 0; // Bi?n d? luu tr? th?i gian tru?c dó
const uint32_t interval = 60000;
char mode_auto[20] ="System:AUTO";
char mode_manual[20] = "System status:MANUAL";
char LCD_state_light[20];
char LCD_state_pump[20];
// Task handles
// �inh nghia h�m map
float map(uint32_t x, uint32_t in_min, uint32_t in_max, uint32_t out_min, uint32_t out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
void readADCsoil();
void Toggle_LED(GPIO_TypeDef* buttonGPIOPort, uint16_t buttonGPIOPin, GPIO_TypeDef* ledGPIOPort, uint16_t ledGPIOPin);
void Read_Light_Sensor_And_Control_LED(GPIO_TypeDef* sensorPort, uint16_t sensorPin, GPIO_TypeDef* ledPort, uint16_t ledPin);
// Khai báo biến trạng thái chế độ
typedef enum {
MODE_AUTO,
MODE_MANUAL
} Mode;
Mode mode = MODE_AUTO; // Khởi tạo với chế độ tự động
void Toggle_Mode(GPIO_TypeDef* modeButtonPort, uint16_t modeButtonPin, volatile uint8_t* mode);
void sendUARTData(float soilADCPercent);
void controlPump(float soilADCPercent);
void displayLCD(char mode[20],char Lcd_send[30]);
//void displayLCD(char mode[20], char lcd_send[30]
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart2_tx;
/* USER CODE BEGIN PV */
//osThreadId_t readSensorTaskHandle;
//osThreadId_t controlLightTaskHandle;
//osThreadId_t displayLCDTaskHandle;
//osMessageQueueId_t sensorValueQueue;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
//void readSensorTask (void *argument);
//void controlLightTask(void *argument);
//void displayLCDTask (void *argument);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
//HAL_ADC_Start_DMA(&hadc1, &var, 1);
// LCD16X2_Init(MyLCD);
// LCD16X2_Clear(MyLCD);
// LCD16X2_Set_Cursor(MyLCD, 1, 1);
// LCD16X2_Write_String(MyLCD, " DeepBlue");
// LCD16X2_Set_Cursor(MyLCD, 2, 1);
// LCD16X2_Write_String(MyLCD, "STM32 Course");
HAL_ADC_Start_DMA(&hadc1, &soilADCValue,1);
//HAL_Delay(6000);
//value = soilADCValue*3.3/4095;
//soilADCPercent = ((float )soilADCValue / 4095.0) * 100.0;
//HAL_Delay(500);
CLCD_4BIT_Init(&LCD1, 16,2, RS_GPIO_Port,RS_Pin, EN_GPIO_Port, EN_Pin,
D4_GPIO_Port,D4_Pin,D5_GPIO_Port,D5_Pin,
D6_GPIO_Port, D6_Pin,D7_GPIO_Port,D7_Pin);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// CLCD_SetCursor(&LCD1,0,0);
// CLCD_WriteString(&LCD1,"IOT Nguyen Quoc");
// sprintf(LCD_send,"Soil Value: %d",(int)soilValue);
// CLCD_SetCursor(&LCD1,0,1);
// CLCD_WriteString(&LCD1, LCD_send);
//
//sendUARTData(soilADCPercent);
// HAL_Delay(6000);
Toggle_Mode(mode_GPIO_Port, mode_Pin, (uint8_t *)&mode);
if(mode ==MODE_AUTO ){
// CLCD_SetCursor(&LCD1,0,0);
// CLCD_WriteString(&LCD1,"IOT Nguyen Quoc");
sprintf(LCD_send,"Soil Value: %d",(int)soilValue);
// CLCD_SetCursor(&LCD1,0,1);
// CLCD_WriteString(&LCD1, LCD_send);
displayLCD(mode_auto,LCD_send);
sendUARTData(soilADCPercent);
Read_Light_Sensor_And_Control_LED(CBAS_GPIO_Port, CBAS_Pin, RDEN_GPIO_Port,RDEN_Pin);
controlPump(soilADCPercent);
}
else if(mode == MODE_MANUAL){
Toggle_LED(DEN_GPIO_Port,DEN_Pin, RDEN_GPIO_Port, RDEN_Pin);
Toggle_LED(MBOM_GPIO_Port, MBOM_Pin, RBOM_GPIO_Port, RBOM_Pin);
displayLCD(LCD_state_light,LCD_state_pump);
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, RS_Pin|EN_Pin|D4_Pin|D5_Pin
|RBOM_Pin|RDEN_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, D6_Pin|D7_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : CBAS_Pin DEN_Pin */
GPIO_InitStruct.Pin = CBAS_Pin|DEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : RS_Pin EN_Pin D4_Pin D5_Pin
RBOM_Pin RDEN_Pin */
GPIO_InitStruct.Pin = RS_Pin|EN_Pin|D4_Pin|D5_Pin
|RBOM_Pin|RDEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : D6_Pin D7_Pin */
GPIO_InitStruct.Pin = D6_Pin|D7_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : mode_Pin RST_Pin MBOM_Pin */
GPIO_InitStruct.Pin = mode_Pin|RST_Pin|MBOM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
soilADCPercent = map(soilADCValue,0,4095,0,100);
soilValue =soilADCPercent;
}
}
void sendUARTData(float soilADCPercent) {
uint32_t currentMillis = HAL_GetTick(); // L?y th?i gian hi?n t?i
// Ki?m tra xem dã d?n lúc g?i d? li?u chua
if (currentMillis - previousMillis >= interval) {
// Luu th?i gian hi?n t?i là th?i di?m cu?i cùng d? li?u du?c g?i di
previousMillis = currentMillis;
// G?i d? li?u qua UART
sprintf(UART_send, "soilValue:%4.2f", soilADCPercent);
HAL_UART_Transmit_DMA(&huart2, (uint8_t*)UART_send, strlen(UART_send));
while (HAL_UART_GetState(&huart2) != HAL_UART_STATE_READY) {}
//memset(UART_send, 0, sizeof(UART_send));
}
}
void controlPump(float soilADCPercent){
if(soilADCPercent > 60.0){
HAL_GPIO_WritePin(RBOM_GPIO_Port, RBOM_Pin,GPIO_PIN_RESET);
}
else {
HAL_GPIO_WritePin(RBOM_GPIO_Port, RBOM_Pin,GPIO_PIN_SET);
}
}
void readADCsoil(){
HAL_ADC_Start_DMA(&hadc1, &soilADCValue,1);
//return soilADCValue;
}
void Toggle_LED(GPIO_TypeDef* buttonGPIOPort, uint16_t buttonGPIOPin, GPIO_TypeDef* ledGPIOPort, uint16_t ledGPIOPin) {
// Ä?á»?c trạng thái cá»§a nút bấm
if (HAL_GPIO_ReadPin(buttonGPIOPort, buttonGPIOPin) == GPIO_PIN_RESET) {
// Ch� cho đến khi nút bấm được thả ra
while (HAL_GPIO_ReadPin(buttonGPIOPort, buttonGPIOPin) == GPIO_PIN_RESET);
// Ä?ảo trạng thái cá»§a LED
HAL_GPIO_TogglePin(ledGPIOPort, ledGPIOPin);
if (buttonGPIOPin == MBOM_Pin && HAL_GPIO_ReadPin(RBOM_GPIO_Port,RBOM_Pin) ==GPIO_PIN_RESET){
sprintf(LCD_state_pump,"pump:ON ");
//CLCD_Clear(&LCD1);
}
else if(buttonGPIOPin == MBOM_Pin && HAL_GPIO_ReadPin(RBOM_GPIO_Port,RBOM_Pin) ==GPIO_PIN_SET){
sprintf(LCD_state_pump,"pump:OFF");
//CLCD_Clear(&LCD1);
}
if (buttonGPIOPin == DEN_Pin && HAL_GPIO_ReadPin(RDEN_GPIO_Port,RDEN_Pin) ==GPIO_PIN_RESET){
sprintf(LCD_state_light,"light:ON ");
//CLCD_Clear(&LCD1);
}
else if(buttonGPIOPin == DEN_Pin && HAL_GPIO_ReadPin(RDEN_GPIO_Port,RDEN_Pin) ==GPIO_PIN_SET){
sprintf(LCD_state_light,"light:OFF");
//CLCD_Clear(&LCD1);
}
}
// if (buttonGPIOPin == MBOM_Pin && HAL_GPIO_ReadPin(RBOM_GPIO_Port,RBOM_Pin) ==GPIO_PIN_RESET){
// sprintf(LCD_state_pump,"pump:on");
// //CLCD_Clear(&LCD1);
//
//
// }
// else{
// sprintf(LCD_state_pump,"pump:off");
// //CLCD_Clear(&LCD1);
//
//
// }
// if (buttonGPIOPin == DEN_Pin && HAL_GPIO_ReadPin(RDEN_GPIO_Port,RDEN_Pin) ==GPIO_PIN_RESET){
// sprintf(LCD_state_light,"light:on");
// //CLCD_Clear(&LCD1);
//
// }
// else{
// sprintf(LCD_state_light,"light:off");
// //CLCD_Clear(&LCD1);
//
//
// }
}
void displayLCD(char mode[20],char Lcd_send[30]){
CLCD_SetCursor(&LCD1,0,0);
CLCD_WriteString(&LCD1,mode);
//sprintf(LCD_send,"Soil Value: %d",(int)soilValue);
CLCD_SetCursor(&LCD1,0,1);
CLCD_WriteString(&LCD1, Lcd_send);
}
void Read_Light_Sensor_And_Control_LED(GPIO_TypeDef* sensorPort, uint16_t sensorPin, GPIO_TypeDef* ledPort, uint16_t ledPin) {
// Ä?á»?c trạng thái cá»§a cảm biến ánh sáng
if (HAL_GPIO_ReadPin(sensorPort, sensorPin) == GPIO_PIN_RESET) {
// Ä?iá»?u khiển LED dá»±a trên trạng thái cá»§a cảm biến ánh sáng
HAL_GPIO_WritePin(ledPort, ledPin, GPIO_PIN_RESET); // Báºt LED
} else {
HAL_GPIO_WritePin(ledPort, ledPin, GPIO_PIN_SET); // Tắt LED
}
}
void Toggle_Mode(GPIO_TypeDef* modeButtonPort, uint16_t modeButtonPin, volatile uint8_t* mode) {
// Ä?á»?c trạng thái cá»§a nút chuyển đổi chế độ
if (HAL_GPIO_ReadPin(modeButtonPort, modeButtonPin) == GPIO_PIN_RESET) {
// Ch� nút bấm được thả ra
while (HAL_GPIO_ReadPin(modeButtonPort, modeButtonPin) == GPIO_PIN_RESET);
// Chuyển đổi chế độ
if (*mode == MODE_AUTO) {
*mode = MODE_MANUAL;
} else {
*mode = MODE_AUTO;
}
CLCD_Clear(&LCD1);
// Ä?ợi má»™t chút để tránh nhấn nút quá nhanh
HAL_Delay(300);
}
}
// Implement task functions
//void readSensorTask(void *argument) {
// uint32_t soilSensor;
// for (;;){
// //Doc gia tri cam bien
// HAL_ADC_Start_DMA (&hadc1,&soilSensor,1);
// osMessageQueuePut(sensorValueQueue, &soilSensor, 0, osWaitForever);
// osDelay(100);
//
//
//
// }
//
//}
//task dieu khien den
//void readSensorTask (void *argument);
//void controlLightTask(void *argument){
// uint32_t soilSensor;
// uint32_t soilSensorValue;
// for(;;){
// //lay gia tri tu hang doi
// osMessageQueueGet(sensorValueQueue, &soilSensor,NULL, osWaitForever);
// //chuyen tin hieu analog
// soilSensorValue = map(soilSensor,0,4095,0,100);
//
// //dieu khien den dua tren gia tri cam bien
// if (soilSensorValue >50){
// //Bat den
// HAL_GPIO_WritePin(RBOM_GPIO_Port, RBOM_Pin, GPIO_PIN_RESET);
// }
// else {
// HAL_GPIO_WritePin(RBOM_GPIO_Port, RBOM_Pin, GPIO_PIN_SET);
//
// }
//
//
//
//
// }
//
//}
//void displayLCDTask (void *argument){
//// uint32_t soilSensor;
//// uint32_t soilSensorValue;
// LCD16X2_Init(MyLCD);
// LCD16X2_Clear(MyLCD);
// for(;;){
// //lay gia tri tu hang doi
//// osMessageQueueGet(sensorValueQueue, &soilSensor,NULL, osWaitForever);
//// //chuyen tin hieu analog
//// soilSensorValue = map(soilSensor,0,4095,0,100);
// //HAL_Init();
// //SystemClock_Config();
// //MX_GPIO_Init();
// LCD16X2_Init(MyLCD);
// LCD16X2_Clear(MyLCD);
// LCD16X2_Set_Cursor(MyLCD, 1, 1);
// LCD16X2_Write_String(MyLCD, " DeepBlue");
// LCD16X2_Set_Cursor(MyLCD, 2, 1);
// LCD16X2_Write_String(MyLCD, "STM32 Course");
//}
// }
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM4 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM4) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */Loading
st-nucleo-l031k6
st-nucleo-l031k6