// Binary Clock v0.2
// Gabriel J. Pensky
#include <Ds1302>
// DS1302 ----------------------------------------------------------------------------------------------------
// Set your own pins with these defines !
#define DS1302_SCLK_PIN 13 // Arduino pin for the Serial Clock
#define DS1302_IO_PIN 12 // Arduino pin for the Data I/O
#define DS1302_CE_PIN 11 // Arduino pin for the Chip Enable
// Macros to convert the bcd values of the registers to normal
// integer variables.
// The code uses separate variables for the high byte and the low byte
// of the bcd, so these macros handle both bytes separately.
#define bcd2bin(h,l) (((h)*10) + (l))
#define bin2bcd_h(x) ((x)/10)
#define bin2bcd_l(x) ((x)%10)
// Register names.
// Since the highest bit is always '1',
// the registers start at 0x80
// If the register is read, the lowest bit should be '1'.
#define DS1302_SECONDS 0x80
#define DS1302_MINUTES 0x82
#define DS1302_HOURS 0x84
#define DS1302_DATE 0x86
#define DS1302_MONTH 0x88
#define DS1302_DAY 0x8A
#define DS1302_YEAR 0x8C
#define DS1302_ENABLE 0x8E
#define DS1302_TRICKLE 0x90
#define DS1302_CLOCK_BURST 0xBE
#define DS1302_CLOCK_BURST_WRITE 0xBE
#define DS1302_CLOCK_BURST_READ 0xBF
#define DS1302_RAMSTART 0xC0
#define DS1302_RAMEND 0xFC
#define DS1302_RAM_BURST 0xFE
#define DS1302_RAM_BURST_WRITE 0xFE
#define DS1302_RAM_BURST_READ 0xFF
// Defines for the bits, to be able to change
// between bit number and binary definition.
// By using the bit number, using the DS1302
// is like programming an AVR microcontroller.
// But instead of using "(1<<X)", or "_BV(X)",
// the Arduino "bit(X)" is used.
#define DS1302_D0 0
#define DS1302_D1 1
#define DS1302_D2 2
#define DS1302_D3 3
#define DS1302_D4 4
#define DS1302_D5 5
#define DS1302_D6 6
#define DS1302_D7 7
// Bit for reading (bit in address)
#define DS1302_READBIT DS1302_D0 // READBIT=1: read instruction
// Bit for clock (0) or ram (1) area,
// called R/C-bit (bit in address)
#define DS1302_RC DS1302_D6
// Seconds Register
#define DS1302_CH DS1302_D7 // 1 = Clock Halt, 0 = start
// Hour Register
#define DS1302_AM_PM DS1302_D5 // 0 = AM, 1 = PM
#define DS1302_12_24 DS1302_D7 // 0 = 24 hour, 1 = 12 hour
// Enable Register
#define DS1302_WP DS1302_D7 // 1 = Write Protect, 0 = enabled
// Trickle Register
#define DS1302_ROUT0 DS1302_D0
#define DS1302_ROUT1 DS1302_D1
#define DS1302_DS0 DS1302_D2
#define DS1302_DS1 DS1302_D2
#define DS1302_TCS0 DS1302_D4
#define DS1302_TCS1 DS1302_D5
#define DS1302_TCS2 DS1302_D6
#define DS1302_TCS3 DS1302_D7
// Structure for the first 8 registers.
// These 8 bytes can be read at once with
// the 'clock burst' command.
// Note that this structure contains an anonymous union.
// It might cause a problem on other compilers.
typedef struct ds1302_struct
{
uint8_t Seconds: 4; // low decimal digit 0-9
uint8_t Seconds10: 3; // high decimal digit 0-5
uint8_t CH: 1; // CH = Clock Halt
uint8_t Minutes: 4;
uint8_t Minutes10: 3;
uint8_t reserved1: 1;
union
{
struct
{
uint8_t Hour: 4;
uint8_t Hour10: 2;
uint8_t reserved2: 1;
uint8_t hour_12_24: 1; // 0 for 24 hour format
} h24;
struct
{
uint8_t Hour: 4;
uint8_t Hour10: 1;
uint8_t AM_PM: 1; // 0 for AM, 1 for PM
uint8_t reserved2: 1;
uint8_t hour_12_24: 1; // 1 for 12 hour format
} h12;
};
uint8_t Date: 4; // Day of month, 1 = first day
uint8_t Date10: 2;
uint8_t reserved3: 2;
uint8_t Month: 4; // Month, 1 = January
uint8_t Month10: 1;
uint8_t reserved4: 3;
uint8_t Day: 3; // Day of week, 1 = first day (any day)
uint8_t reserved5: 5;
uint8_t Year: 4; // Year, 0 = year 2000
uint8_t Year10: 4;
uint8_t reserved6: 7;
uint8_t WP: 1; // WP = Write Protect
};
// Variables -----------------------------------------------------------------------------------------------------------
unsigned long timen = 0;
unsigned long timeb = 0;
int adjustStep = 0;
byte s0 = B00000000;
byte s1 = B00000000;
byte m0 = B00000000;
byte m1 = B00000000;
byte h0 = B00000000;
byte h1 = B00000000;
boolean button1State = LOW;
boolean lastButton1State = LOW;
boolean b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0, b6 = 0;
// Setup -----------------------------------------------------------------------------------------------------------------
void setup()
{
for (int i = 2; i <= 11; i++)
{ pinMode(i, OUTPUT);
digitalWrite(i, HIGH);
}
ds1302_struct rtc;
Serial.begin(9600);
// Start by clearing the Write Protect bit
// Otherwise the clock data cannot be written
// The whole register is written,
// but the WP-bit is the only bit in that register.
DS1302_write (DS1302_ENABLE, 0);
// Disable Trickle Charger.
DS1302_write (DS1302_TRICKLE, 0x00);
// Remove the next define,
// after the right date and time are set.
//#define SET_DATE_TIME_JUST_ONCE
#ifdef SET_DATE_TIME_JUST_ONCE
// Fill these variables with the date and time.
int seconds, minutes, hours, dayofweek, dayofmonth, month, year;
// Example for april 15, 2013, 10:08, monday is 2nd day of Week.
// Set your own time and date in these variables.
seconds = 0;
minutes = 48;
hours = 8;
dayofweek = 1; // Day of week, any day can be first, counts 1...7
dayofmonth = 19; // Day of month, 1...31
month = 2; // month 1...12
year = 2017;
// Set a time and date
// This also clears the CH (Clock Halt) bit,
// to start the clock.
// Fill the structure with zeros to make
// any unused bits zero
memset ((char *) &rtc, 0, sizeof(rtc));
rtc.Seconds = bin2bcd_l( seconds);
rtc.Seconds10 = bin2bcd_h( seconds);
rtc.CH = 0; // 1 for Clock Halt, 0 to run;
rtc.Minutes = bin2bcd_l( minutes);
rtc.Minutes10 = bin2bcd_h( minutes);
// To use the 12 hour format,
// use it like these four lines:
// rtc.h12.Hour = bin2bcd_l( hours);
// rtc.h12.Hour10 = bin2bcd_h( hours);
// rtc.h12.AM_PM = 0; // AM = 0
// rtc.h12.hour_12_24 = 1; // 1 for 24 hour format
rtc.h24.Hour = bin2bcd_l( hours);
rtc.h24.Hour10 = bin2bcd_h( hours);
rtc.h24.hour_12_24 = 0; // 0 for 24 hour format
rtc.Date = bin2bcd_l( dayofmonth);
rtc.Date10 = bin2bcd_h( dayofmonth);
rtc.Month = bin2bcd_l( month);
rtc.Month10 = bin2bcd_h( month);
rtc.Day = dayofweek;
rtc.Year = bin2bcd_l( year - 2000);
rtc.Year10 = bin2bcd_h( year - 2000);
rtc.WP = 0;
// Write all clock data at once (burst mode).
DS1302_clock_burst_write( (uint8_t *) &rtc);
#endif
}
// Loop ----------------------------------------------------------------------------------------------------------
void loop()
{ ds1302_struct rtc;
for (int coln = 0; coln <= 4; coln++) {
digitalWrite(coln + 6, HIGH);
switch (coln) {
case 0:
for (int rown = 0; rown <= 3; rown++) {
if ( bitRead(s0, rown) == 1) {
digitalWrite(rown + 2, LOW);
delayMicroseconds(100);
digitalWrite(rown + 2, HIGH);
}
} break;
case 1:
for (int rown = 0; rown <= 3; rown++) {
if ( bitRead(s1, rown) == 1) {
digitalWrite(rown + 2, LOW);
delayMicroseconds(100);
digitalWrite(rown + 2, HIGH);
}
}
if (bitRead(h1, 0) == 1) {
digitalWrite(5, LOW);
delayMicroseconds(100);
digitalWrite(5, HIGH);
} break;
case 2:
for (int rown = 0; rown <= 3; rown++) {
if ( bitRead(m0, rown) == 1) {
digitalWrite(rown + 2, LOW);
delayMicroseconds(100);
digitalWrite(rown + 2, HIGH);
}
} break;
case 3:
for (int rown = 0; rown <= 3; rown++) {
if ( bitRead(m1, rown) == 1) {
digitalWrite(rown + 2, LOW);
delayMicroseconds(100);
digitalWrite(rown + 2, HIGH);
}
}
if (bitRead(h1, 1) == 1) {
digitalWrite(5, LOW);
delayMicroseconds(100);
digitalWrite(5, HIGH);
} break;
case 4:
for (int rown = 0; rown <= 3; rown++) {
if ( bitRead(h0, rown) == 1) {
digitalWrite(rown + 2, LOW);
delayMicroseconds(100);
digitalWrite(rown + 2, HIGH);
}
} break;
}
digitalWrite(coln + 6, LOW);
}
if (digitalRead(A1) == 0) {
timeb++;
} else {
timeb = 0;
}
if (timeb > 2000) {
adjustStep++;
timeb = 0;
Serial.print (adjustStep);
if (adjustStep == 6) {
digitalWrite(5, LOW);
digitalWrite(7, HIGH);
digitalWrite(9, HIGH);
} else {
digitalWrite(adjustStep + 5, HIGH);
digitalWrite(2, LOW);
digitalWrite(3, LOW);
digitalWrite(4, LOW);
if (adjustStep != 2 && adjustStep != 4) {
digitalWrite(5, LOW);
}
}
delay (500);
if (adjustStep == 6) {
digitalWrite(5, HIGH);
digitalWrite(7, LOW);
digitalWrite(9, LOW);
} else {
digitalWrite(adjustStep + 5, LOW);
digitalWrite(2, HIGH);
digitalWrite(3, HIGH);
digitalWrite(4, HIGH);
if (adjustStep != 2 && adjustStep != 4) {
digitalWrite(5, HIGH);
}
}
}
switch (adjustStep) {
case 0:
break;
case 1:
if (digitalRead(A2) != b1) {
b1 = digitalRead(A2);
if (b1 == 0) {
s0++;
if (s0 > 9) {
s0 = 0;
}
}
}
break;
case 2:
if (digitalRead(A2) != b2) {
b2 = digitalRead(A2);
if (b2 == 0) {
s1++;
if (s1 > 5) {
s1 = 0;
}
}
}
break;
case 3:
if (digitalRead(A2) != b3) {
b3 = digitalRead(A2);
if (b3 == 0) {
m0++;
if (m0 > 9) {
m0 = 0;
}
}
}
break;
case 4:
if (digitalRead(A2) != b4) {
b4 = digitalRead(A2);
if (b4 == 0) {
m1++;
if (m1 > 5) {
m1 = 0;
}
}
}
break;
case 5:
if (digitalRead(A2) != b5) {
b5 = digitalRead(A2);
if (b5 == 0) {
h0++;
if (h0 > 9) {
h0 = 0;
}
}
}
break;
case 6:
if (digitalRead(A2) != b6) {
b6 = digitalRead(A2);
if (b6 == 0) {
h1++;
if (h0 > 3) {
if (h1 > 2) {
h1 = 0;
}
} else {
if (h1 > 1) {
h1 = 0;
}
}
}
}
break;
case 7:
// Fill the structure with zeros to make
// any unused bits zero
memset ((char *) &rtc, 0, sizeof(rtc));
rtc.Seconds = s0;
rtc.Seconds10 = s1;
rtc.CH = 0; // 1 for Clock Halt, 0 to run;
rtc.Minutes = m0;
rtc.Minutes10 = m1;
rtc.h24.Hour = h0;
rtc.h24.Hour10 = h1;
rtc.h24.hour_12_24 = 0; // 0 for 24 hour format
rtc.Date = 0;
rtc.Date10 = 0;
rtc.Month = 0;
rtc.Month10 = 0;
rtc.Day = 0;
rtc.Year = 0;
rtc.Year10 = 0;
rtc.WP = 0;
// Write all clock data at once (burst mode).
DS1302_clock_burst_write( (uint8_t *) &rtc);
adjustStep = 0;
break;
}
if (timen <= millis() - 1000 && adjustStep == 0) {
char buffer[80]; // the code uses 70 characters.
// Read all clock data at once (burst mode).
DS1302_clock_burst_read( (uint8_t *) &rtc);
s0 = rtc.Seconds;
s1 = rtc.Seconds10;
m0 = rtc.Minutes;
m1 = rtc.Minutes10;
h0 = rtc.h24.Hour;
h1 = rtc.h24.Hour10;
timen = millis();
//Serial.print(h1);
//Serial.print(h0);
//Serial.print(m1);
//Serial.print(m0);
//Serial.print(s1);
//Serial.println(s0);
//Serial.println(timen);
}
}
// -------------------------------------------------------------------------------------------------------------
// DS1302_clock_burst_read
//
// This function reads 8 bytes clock data in burst mode
// from the DS1302.
//
// This function may be called as the first function,
// also the pinMode is set.
//
void DS1302_clock_burst_read( uint8_t *p)
{
int i;
_DS1302_start();
// Instead of the address,
// the CLOCK_BURST_READ command is issued
// the I/O-line is released for the data
_DS1302_togglewrite( DS1302_CLOCK_BURST_READ, true);
for ( i = 0; i < 8; i++)
{
*p++ = _DS1302_toggleread();
}
_DS1302_stop();
}
// ---------------------------------------------------------------------------------------------------------------
// DS1302_clock_burst_write
//
// This function writes 8 bytes clock data in burst mode
// to the DS1302.
//
// This function may be called as the first function,
// also the pinMode is set.
//
void DS1302_clock_burst_write( uint8_t *p)
{
int i;
_DS1302_start();
// Instead of the address,
// the CLOCK_BURST_WRITE command is issued.
// the I/O-line is not released
_DS1302_togglewrite( DS1302_CLOCK_BURST_WRITE, false);
for ( i = 0; i < 8; i++)
{
// the I/O-line is not released
_DS1302_togglewrite( *p++, false);
}
_DS1302_stop();
}
// -----------------------------------------------------------------------------------------------------------------------
// DS1302_read
//
// This function reads a byte from the DS1302
// (clock or ram).
//
// The address could be like "0x80" or "0x81",
// the lowest bit is set anyway.
//
// This function may be called as the first function,
// also the pinMode is set.
//
uint8_t DS1302_read(int address)
{
uint8_t data;
// set lowest bit (read bit) in address
bitSet( address, DS1302_READBIT);
_DS1302_start();
// the I/O-line is released for the data
_DS1302_togglewrite( address, true);
data = _DS1302_toggleread();
_DS1302_stop();
return (data);
}
// ------------------------------------------------------------------------------------------------------------------
// DS1302_write
//
// This function writes a byte to the DS1302 (clock or ram).
//
// The address could be like "0x80" or "0x81",
// the lowest bit is cleared anyway.
//
// This function may be called as the first function,
// also the pinMode is set.
//
void DS1302_write( int address, uint8_t data)
{
// clear lowest bit (read bit) in address
bitClear( address, DS1302_READBIT);
_DS1302_start();
// don't release the I/O-line
_DS1302_togglewrite( address, false);
// don't release the I/O-line
_DS1302_togglewrite( data, false);
_DS1302_stop();
}
// --------------------------------------------------------------------------------------------------------------------
// _DS1302_start
//
// A helper function to setup the start condition.
//
// An 'init' function is not used.
// But now the pinMode is set every time.
// That's not a big deal, and it's valid.
// At startup, the pins of the Arduino are high impedance.
// Since the DS1302 has pull-down resistors,
// the signals are low (inactive) until the DS1302 is used.
void _DS1302_start( void)
{
digitalWrite( DS1302_CE_PIN, LOW); // default, not enabled
pinMode( DS1302_CE_PIN, OUTPUT);
digitalWrite( DS1302_SCLK_PIN, LOW); // default, clock low
pinMode( DS1302_SCLK_PIN, OUTPUT);
pinMode( DS1302_IO_PIN, OUTPUT);
digitalWrite( DS1302_CE_PIN, HIGH); // start the session
delayMicroseconds( 4); // tCC = 4us
}
// ------------------------------------------------------------------------------------------------------------------------
// _DS1302_stop
//
// A helper function to finish the communication.
//
void _DS1302_stop(void)
{
// Set CE low
digitalWrite( DS1302_CE_PIN, LOW);
delayMicroseconds( 4); // tCWH = 4us
}
// -------------------------------------------------------------------------------------------------------------------------
// _DS1302_toggleread
//
// A helper function for reading a byte with bit toggle
//
// This function assumes that the SCLK is still high.
//
uint8_t _DS1302_toggleread( void)
{
uint8_t i, data;
data = 0;
for ( i = 0; i <= 7; i++)
{
// Issue a clock pulse for the next databit.
// If the 'togglewrite' function was used before
// this function, the SCLK is already high.
digitalWrite( DS1302_SCLK_PIN, HIGH);
delayMicroseconds( 1);
// Clock down, data is ready after some time.
digitalWrite( DS1302_SCLK_PIN, LOW);
delayMicroseconds( 1); // tCL=1000ns, tCDD=800ns
// read bit, and set it in place in 'data' variable
bitWrite( data, i, digitalRead( DS1302_IO_PIN));
}
return ( data);
}
// -----------------------------------------------------------------------------------------------------------------------
// _DS1302_togglewrite
//
// A helper function for writing a byte with bit toggle
//
// The 'release' parameter is for a read after this write.
// It will release the I/O-line and will keep the SCLK high.
//
void _DS1302_togglewrite( uint8_t data, uint8_t release)
{
int i;
for ( i = 0; i <= 7; i++)
{
// set a bit of the data on the I/O-line
digitalWrite( DS1302_IO_PIN, bitRead(data, i));
delayMicroseconds( 1); // tDC = 200ns
// clock up, data is read by DS1302
digitalWrite( DS1302_SCLK_PIN, HIGH);
delayMicroseconds( 1); // tCH = 1000ns, tCDH = 800ns
if ( release && i == 7)
{
// If this write is followed by a read,
// the I/O-line should be released after
// the last bit, before the clock line is made low.
// This is according the datasheet.
// I have seen other programs that don't release
// the I/O-line at this moment,
// and that could cause a shortcut spike
// on the I/O-line.
pinMode( DS1302_IO_PIN, INPUT);
// For Arduino 1.0.3, removing the pull-up is no longer needed.
// Setting the pin as 'INPUT' will already remove the pull-up.
// digitalWrite (DS1302_IO, LOW); // remove any pull-up
}
else
{
digitalWrite( DS1302_SCLK_PIN, LOW);
delayMicroseconds( 1); // tCL=1000ns, tCDD=800ns
}
}
}