# imports
import machine
import math
import time
#######################################
# Pin and constant definitions
#######################################
SEVEN_SEGMENT_START_PIN = 0
ANALOGUE_INPUT_PIN = 26
DISPLAY_COUNT = 4
MEASUREMENT_COUNT = 16
DECIMAL_PRECISION = 4
ADC_RANGE = float((math.pow(2, 16) - 1))
button = machine.Pin(16, machine.Pin.IN, machine.Pin.PULL_UP)
# HEX values for 7 segment display values
digit_list_hex = [
0x40, # 0
0x79, # 1
0x24, # 2
0x30, # 3
0x19, # 4
0x12, # 5
0x02, # 6
0x78, # 7
0x00, # 8
0x10, # 9
0x08, # A
0x03, # B
0x46, # C
0x21, # D
0x06, # E
0x0E, # F
0x7F # Empty
]
#######################################
# Global variables
#######################################
display_value = 0
segment_pins = []
display_select_pins = []
analogue_voltage_pin = machine.ADC(ANALOGUE_INPUT_PIN)
current_display_index = DISPLAY_COUNT -1 # to keep track of which digit is currently being displayed
display_timer = None
prev_analogue_voltage = -1
button_pressed = False
last_button_time_stamp = 0
DECIMAL_PRECISION = 4
#######################################
# Function definitions
#######################################
# Function to read the ADC pin and
# to convert the digital value to a voltage level in the 0-3.3V range
# This function updates the value of the display_value global variable
def read_analogue_voltage(pin): # We can use the pin parameter if needed
global display_value, prev_disp_val, display_timer
global prev_analogue_voltage, DECIMAL_PRECISION
# Take MEASUREMENT_COUNT measurements and average them
total_value = 0
for _ in range(MEASUREMENT_COUNT):
total_value += pin.read_u16()
average_value = total_value // MEASUREMENT_COUNT
# Convert the average digital value to an analogue voltage value
analogue_voltage = int(round((average_value / ADC_RANGE) * 3.3 * 1000))
if analogue_voltage != prev_analogue_voltage:
prev_analogue_voltage = analogue_voltage
# Display on serial monitor in mV
print(f'Voltage: {analogue_voltage} mV')
# Dynamically adjust DECIMAL_PRECISION based on voltage range
if analogue_voltage < 1000:
DECIMAL_PRECISION = 4
else:
DECIMAL_PRECISION = 3
new_display_value = int(analogue_voltage / 1000 * math.pow(10, DECIMAL_PRECISION))
max_val = math.pow(10, DISPLAY_COUNT) - 1
if new_display_value > max_val:
print(f'warn: {new_display_value} exceeds {max_val}, clipping')
display_value = new_display_value
disable_display_timer()
scan_display(None)
enable_display_timer()
display_digit(16, -1)
time.sleep(0.1)
# Function to disable timer that triggers scanning 7 segment displays
def disable_display_timer():
global display_timer
display_timer.deinit()
# Function to enable timer that triggers scanning 7 segment displays
def enable_display_timer():
global display_timer
display_timer.init(period=4, mode=machine.Timer.PERIODIC, callback=scan_display)
# Function to handle scanning 7 segment displays
# Display the value stored in the display_value global variable
# on available 7-segment displays
def scan_display(timer):
global current_display_index, display_value
# Extract the digit corresponding to the current display index
# Only display positive values
digit = int((abs(display_value) // math.pow(10, current_display_index))) % 10
# Display the digit,
# enable the decimal point if the current digit index equals to the set decimal precision
display_digit(digit, current_display_index, current_display_index != DECIMAL_PRECISION)
# Move to the next display
current_display_index -= 1
if current_display_index < 0:
current_display_index = DISPLAY_COUNT - 1
# Function display the given value on the display with the specified index
# dp_enable specifies if the decimal pooint should be on or off
def display_digit(digit_value, digit_index, dp_enable=False):
# Ensure the value is valid
if digit_value < 0 or digit_value > len(digit_list_hex):
return
# Deselect all display select pins
for pin in display_select_pins:
pin.value(0)
# Set the segments according to the digit value
mask = digit_list_hex[digit_value]
for i in range(7): # 7 segments from A to G
segment_pins[i].value((mask >> i) & 1)
segment_pins[7].value(1 if dp_enable else 0)
# If digit_index is -1, activate all display select pins
if digit_index == -1:
for pin in display_select_pins:
pin.value(1)
# Otherwise, ensure the index is valid and activate the relevant display select pin
elif 0 <= digit_index < DISPLAY_COUNT:
display_select_pins[digit_index].value(1)
# Function to test avaiable 7-segment displays
def display_value_test():
global display_value
disable_display_timer()
current_display_index = 0
for i in range(0, len(digit_list_hex)):
display_digit(i, -1, i % 2 != 0)
time.sleep(0.5)
for i in range(0, len(digit_list_hex)):
display_digit(i, DISPLAY_COUNT - 1 - (i % DISPLAY_COUNT), True)
time.sleep(0.5)
display_digit(16, -1, False)
enable_display_timer()
def count_display_value(timer_int):
global display_value
display_value += 1
if display_value > 9999:
display_value = 0
#print(display_value)
# Interrupt handler for button press
def int_handler(pin):
global button_pressed, last_button_time_stamp
current_button_time = time.ticks_ms()
button_press_delta = current_button_time - last_button_time_stamp
if button_press_delta > 200:
last_button_time_stamp = current_button_time
button_pressed = True
# Function to setup GPIO/ADC pins, timers and interrupts
def setup():
global segment_pins, display_select_pins
global display_timer, counter_timer
# Set up display select pins
for i in range(SEVEN_SEGMENT_START_PIN + 8, SEVEN_SEGMENT_START_PIN + 8 + DISPLAY_COUNT):
pin = machine.Pin(i, machine.Pin.OUT)
pin.value(0)
display_select_pins.append(pin)
# Set up seven segment pins
for i in range(SEVEN_SEGMENT_START_PIN, SEVEN_SEGMENT_START_PIN + 8):
pin = machine.Pin(i, machine.Pin.OUT)
pin.value(1)
segment_pins.append(pin)
# Start the timer interrupt for scanning
display_timer = machine.Timer()
enable_display_timer()
# Setup button interrupt
button.irq(trigger=machine.Pin.IRQ_FALLING, handler=int_handler)
if __name__ == '__main__':
setup()
#display_value_test()
while True:
if button_pressed is True:
button_pressed = False
read_analogue_voltage(analogue_voltage_pin)
time.sleep(0.5)