#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <FastLED.h>
#include <maps.h>
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
// The pins for I2C are defined by the Wire-library.
// On an arduino UNO: A4(SDA), A5(SCL)
// On an arduino MEGA 2560: 20(SDA), 21(SCL)
// On an arduino LEONARDO: 2(SDA), 3(SCL), ...
#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)
#define SCREEN_ADDRESS 0x3C ///< See datasheet for Address; 0x3D for 128x64, 0x3C for 128x32
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
#define NUMFLAKES 10 // Number of snowflakes in the animation example
#define LOGO_HEIGHT 16
#define LOGO_WIDTH 16
static const unsigned char PROGMEM logo_bmp[] =
{ 0b00000000, 0b11000000,
0b00000001, 0b11000000,
0b00000001, 0b11000000,
0b00000011, 0b11100000,
0b11110011, 0b11100000,
0b11111110, 0b11111000,
0b01111110, 0b11111111,
0b00110011, 0b10011111,
0b00011111, 0b11111100,
0b00001101, 0b01110000,
0b00011011, 0b10100000,
0b00111111, 0b11100000,
0b00111111, 0b11110000,
0b01111100, 0b11110000,
0b01110000, 0b01110000,
0b00000000, 0b00110000 };
// ============ LED definitions ================
// How many leds in your strip?
#define NUM_LEDS 512
#define DATA_PIN 5
#define CLOCK_PIN 13
// Define the array of leds
CRGB leds[NUM_LEDS];
CRGB _leds[NUM_LEDS];
uint8_t shouldClear = 1; // clear all leds between frames
class Effect
{
public:
virtual void setup(void) {};
virtual void draw(void) {};
};
void remap()
{
for (int i = 0; i < NUM_LEDS; i++)
{
_leds[ledsOnPCBMap[i]] = leds[i];
}
}
class FTest : public Effect
{
public:
void draw()
{
static uint8_t x = 0;
x++;
fill_rainbow(leds, NUM_LEDS, x, 1);
}
};
class Effect2D : public Effect
{
public:
virtual void setup(void) {};
void draw(void) override
{
this->beforeRender();
for (int i = 0; i < NUM_LEDS; i++)
{
leds[i] = this->render(i, ledsXYMap[i][0], ledsXYMap[i][0]);
}
};
virtual void beforeRender(void) {};
virtual CRGB render(int idx, float x, float y) { return CRGB::Black; }
};
class EffectPolar : public Effect
{
public:
virtual void setup(void) {};
void draw(void) override
{
this->beforeRender();
for (int i = 0; i < NUM_LEDS; i++)
{
leds[i] = this->render(i, ledsPolarMap[i][0], ledsPolarMap[i][0]);
}
};
virtual void beforeRender(void) {};
virtual CRGB render(int idx, float r, float deg) { return CRGB::Black; }
};
class PolarTest : public EffectPolar
{
float r = 0;
uint8_t hue = 0;
void beforeRender() override
{
this->r = beatsin8(20, 0, 255) / 255.0;
this->hue++;
}
CRGB render(int idx, float r, float deg) override
{
float delta = abs(r - this->r);
if (delta < 0.2)
return CHSV(this->hue, 200 - (0.2 - delta) * 600, 200);
return CRGB::Black;
}
};
class VariableArmsDemo : public Effect
{
void draw(void) override
{
static uint8_t hueOffset = 0;
static uint8_t numArms = 1;
EVERY_N_SECONDS(1) { numArms++; }
for (int i = 0; i < NUM_LEDS; i++)
{
uint16_t armIndex = i % numArms;
uint8_t hue = (map(armIndex, 0, numArms, 0, 255) + hueOffset) % 255;
leds[ledsAsSpiralMap[i]] = CHSV(hue, 255, 255);
}
}
};
class PlanarDemo : public Effect
{
void draw(void) override
{
for(int i=0;i<PLANAR_COLS;i++) {
for(int j=0;j<PLANAR_ROWS;j++) {
int idx = planarMap[i*PLANAR_COLS+j];
if(idx==1000)
continue;
leds[idx] = CHSV(i*20, 255, 255);
}
}
}
};
class PolarDemo : public Effect
{
void draw(void) override
{
uint16_t a = millis()/7;
static int n = 0;
//EVERY_N_MILLIS(259) { n++; n = n%POLAR_COLS;}
for (int j = 0; j < POLAR_ROWS; j++) {
for (int i = 0; i < POLAR_COLS; i++) {
uint16_t idx = polarMap[POLAR_COLS*j+i];
if (idx==1000) continue;
leds[idx].setHue(i*54+(a>>2)+(sin8(j*16+a))>>1);
//leds[idx] = CHSV(i*4,200,200);
}
}
}
};
class PolarCaleidoscope : public Effect
{
void draw(void) override
{
uint16_t a = millis()/7;
static int n = 0;
//EVERY_N_MILLIS(259) { n++; n = n%POLAR_COLS;}
for (int j = 0; j < POLAR_ROWS; j++) {
for (int i = 0; i < POLAR_COLS; i++) {
uint16_t idx = polarMap[POLAR_COLS*j+i];
if (idx==1000) continue;
int jj = POLAR_ROWS - j;
byte r = (sin8(i*16+a)+cos8(jj*16+a/2))/2;
byte g = sin8(jj*16+a/2+sin8(leds[idx].r+a)/16);
byte b = cos8(i*16+jj*16-a/2+leds[idx].g);
leds[idx].setRGB (r,g,b);
}
}
}
};
class PolarFireFly : public Effect
{
void draw(void) override
{
uint16_t a = millis()/3;
static int n = 0;
//EVERY_N_MILLIS(259) { n++; n = n%POLAR_COLS;}
for (int j = 0; j < POLAR_ROWS; j++) {
for (int i = 0; i < POLAR_COLS; i++) {
uint16_t idx = polarMap[POLAR_COLS*j+i];
int jj = POLAR_ROWS - j;
if (idx==1000) continue;
leds[idx]= HeatColor (qsub8 (inoise8 (i * 60+a , jj * 5+ a , a /3), abs8(jj - (POLAR_ROWS-1)) * 255 / (POLAR_ROWS+2)));
//leds[idx] = CHSV(i*4,200,200);
}
}
}
};
class Spiral : public Effect
{
void draw(void) override
{
static uint8_t hueOffset = 0;
static uint8_t numArms = 2;
for (int i = 0; i < NUM_LEDS; i++)
{
uint16_t armIndex = i % numArms;
if(armIndex == 0)
leds[ledsAsSpiralMap[i]] = CRGB::Red;
else
leds[ledsAsSpiralMap[i]] = CRGB::White;
}
}
};
void testdrawline() {
int16_t i;
display.clearDisplay(); // Clear display buffer
for(i=0; i<display.width(); i+=4) {
display.drawLine(0, 0, i, display.height()-1, SSD1306_WHITE);
display.display(); // Update screen with each newly-drawn line
delay(1);
}
for(i=0; i<display.height(); i+=4) {
display.drawLine(0, 0, display.width()-1, i, SSD1306_WHITE);
display.display();
delay(1);
}
delay(250);
display.clearDisplay();
for(i=0; i<display.width(); i+=4) {
display.drawLine(0, display.height()-1, i, 0, SSD1306_WHITE);
display.display();
delay(1);
}
for(i=display.height()-1; i>=0; i-=4) {
display.drawLine(0, display.height()-1, display.width()-1, i, SSD1306_WHITE);
display.display();
delay(1);
}
delay(250);
display.clearDisplay();
for(i=display.width()-1; i>=0; i-=4) {
display.drawLine(display.width()-1, display.height()-1, i, 0, SSD1306_WHITE);
display.display();
delay(1);
}
for(i=display.height()-1; i>=0; i-=4) {
display.drawLine(display.width()-1, display.height()-1, 0, i, SSD1306_WHITE);
display.display();
delay(1);
}
delay(250);
display.clearDisplay();
for(i=0; i<display.height(); i+=4) {
display.drawLine(display.width()-1, 0, 0, i, SSD1306_WHITE);
display.display();
delay(1);
}
for(i=0; i<display.width(); i+=4) {
display.drawLine(display.width()-1, 0, i, display.height()-1, SSD1306_WHITE);
display.display();
delay(1);
}
delay(2000); // Pause for 2 seconds
}
void testdrawrect(void) {
display.clearDisplay();
for(int16_t i=0; i<display.height()/2; i+=2) {
display.drawRect(i, i, display.width()-2*i, display.height()-2*i, SSD1306_WHITE);
display.display(); // Update screen with each newly-drawn rectangle
delay(1);
}
delay(2000);
}
void testfillrect(void) {
display.clearDisplay();
for(int16_t i=0; i<display.height()/2; i+=3) {
// The INVERSE color is used so rectangles alternate white/black
display.fillRect(i, i, display.width()-i*2, display.height()-i*2, SSD1306_INVERSE);
display.display(); // Update screen with each newly-drawn rectangle
delay(1);
}
delay(2000);
}
void testdrawcircle(void) {
display.clearDisplay();
for(int16_t i=0; i<max(display.width(),display.height())/2; i+=2) {
display.drawCircle(display.width()/2, display.height()/2, i, SSD1306_WHITE);
display.display();
delay(1);
}
delay(2000);
}
void testfillcircle(void) {
display.clearDisplay();
for(int16_t i=max(display.width(),display.height())/2; i>0; i-=3) {
// The INVERSE color is used so circles alternate white/black
display.fillCircle(display.width() / 2, display.height() / 2, i, SSD1306_INVERSE);
display.display(); // Update screen with each newly-drawn circle
delay(1);
}
delay(2000);
}
void testdrawroundrect(void) {
display.clearDisplay();
for(int16_t i=0; i<display.height()/2-2; i+=2) {
display.drawRoundRect(i, i, display.width()-2*i, display.height()-2*i,
display.height()/4, SSD1306_WHITE);
display.display();
delay(1);
}
delay(2000);
}
void testfillroundrect(void) {
display.clearDisplay();
for(int16_t i=0; i<display.height()/2-2; i+=2) {
// The INVERSE color is used so round-rects alternate white/black
display.fillRoundRect(i, i, display.width()-2*i, display.height()-2*i,
display.height()/4, SSD1306_INVERSE);
display.display();
delay(1);
}
delay(2000);
}
void testdrawtriangle(void) {
display.clearDisplay();
for(int16_t i=0; i<max(display.width(),display.height())/2; i+=5) {
display.drawTriangle(
display.width()/2 , display.height()/2-i,
display.width()/2-i, display.height()/2+i,
display.width()/2+i, display.height()/2+i, SSD1306_WHITE);
display.display();
delay(1);
}
delay(2000);
}
void testfilltriangle(void) {
display.clearDisplay();
for(int16_t i=max(display.width(),display.height())/2; i>0; i-=5) {
// The INVERSE color is used so triangles alternate white/black
display.fillTriangle(
display.width()/2 , display.height()/2-i,
display.width()/2-i, display.height()/2+i,
display.width()/2+i, display.height()/2+i, SSD1306_INVERSE);
display.display();
delay(1);
}
delay(2000);
}
void testdrawchar(void) {
display.clearDisplay();
display.setTextSize(1); // Normal 1:1 pixel scale
display.setTextColor(SSD1306_WHITE); // Draw white text
display.setCursor(0, 0); // Start at top-left corner
display.cp437(true); // Use full 256 char 'Code Page 437' font
// Not all the characters will fit on the display. This is normal.
// Library will draw what it can and the rest will be clipped.
for(int16_t i=0; i<256; i++) {
if(i == '\n') display.write(' ');
else display.write(i);
}
display.display();
delay(2000);
}
void testdrawstyles(void) {
display.clearDisplay();
display.setTextSize(1); // Normal 1:1 pixel scale
display.setTextColor(SSD1306_WHITE); // Draw white text
display.setCursor(0,0); // Start at top-left corner
display.println(F("Hello, world!"));
display.setTextColor(SSD1306_BLACK, SSD1306_WHITE); // Draw 'inverse' text
display.println(3.141592);
display.setTextSize(2); // Draw 2X-scale text
display.setTextColor(SSD1306_WHITE);
display.print(F("0x")); display.println(0xDEADBEEF, HEX);
display.display();
delay(2000);
}
void testscrolltext(void) {
display.clearDisplay();
display.setTextSize(2); // Draw 2X-scale text
display.setTextColor(SSD1306_WHITE);
display.setCursor(10, 0);
display.println(F("scroll"));
display.display(); // Show initial text
delay(100);
// Scroll in various directions, pausing in-between:
display.startscrollright(0x00, 0x0F);
delay(2000);
display.stopscroll();
delay(1000);
display.startscrollleft(0x00, 0x0F);
delay(2000);
display.stopscroll();
delay(1000);
display.startscrolldiagright(0x00, 0x07);
delay(2000);
display.startscrolldiagleft(0x00, 0x07);
delay(2000);
display.stopscroll();
delay(1000);
}
void testdrawbitmap(void) {
display.clearDisplay();
display.drawBitmap(
(display.width() - LOGO_WIDTH ) / 2,
(display.height() - LOGO_HEIGHT) / 2,
logo_bmp, LOGO_WIDTH, LOGO_HEIGHT, 1);
display.display();
delay(1000);
}
#define XPOS 0 // Indexes into the 'icons' array in function below
#define YPOS 1
#define DELTAY 2
void testanimate(const uint8_t *bitmap, uint8_t w, uint8_t h) {
int8_t f, icons[NUMFLAKES][3];
// Initialize 'snowflake' positions
for(f=0; f< NUMFLAKES; f++) {
icons[f][XPOS] = random(1 - LOGO_WIDTH, display.width());
icons[f][YPOS] = -LOGO_HEIGHT;
icons[f][DELTAY] = random(1, 6);
Serial.print(F("x: "));
Serial.print(icons[f][XPOS], DEC);
Serial.print(F(" y: "));
Serial.print(icons[f][YPOS], DEC);
Serial.print(F(" dy: "));
Serial.println(icons[f][DELTAY], DEC);
}
for(;;) { // Loop forever...
display.clearDisplay(); // Clear the display buffer
// Draw each snowflake:
for(f=0; f< NUMFLAKES; f++) {
display.drawBitmap(icons[f][XPOS], icons[f][YPOS], bitmap, w, h, SSD1306_WHITE);
}
display.display(); // Show the display buffer on the screen
delay(200); // Pause for 1/10 second
// Then update coordinates of each flake...
for(f=0; f< NUMFLAKES; f++) {
icons[f][YPOS] += icons[f][DELTAY];
// If snowflake is off the bottom of the screen...
if (icons[f][YPOS] >= display.height()) {
// Reinitialize to a random position, just off the top
icons[f][XPOS] = random(1 - LOGO_WIDTH, display.width());
icons[f][YPOS] = -LOGO_HEIGHT;
icons[f][DELTAY] = random(1, 6);
}
}
}
}
void displayDemo() {
// SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally
if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) {
Serial.println(F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever
}
// Show initial display buffer contents on the screen --
// the library initializes this with an Adafruit splash screen.
display.display();
delay(2000); // Pause for 2 seconds
// Clear the buffer
display.clearDisplay();
// Draw a single pixel in white
display.drawPixel(10, 10, SSD1306_WHITE);
// Show the display buffer on the screen. You MUST call display() after
// drawing commands to make them visible on screen!
display.display();
delay(2000);
// display.display() is NOT necessary after every single drawing command,
// unless that's what you want...rather, you can batch up a bunch of
// drawing operations and then update the screen all at once by calling
// display.display(). These examples demonstrate both approaches...
testdrawline(); // Draw many lines
testdrawrect(); // Draw rectangles (outlines)
testfillrect(); // Draw rectangles (filled)
testdrawcircle(); // Draw circles (outlines)
testfillcircle(); // Draw circles (filled)
testdrawroundrect(); // Draw rounded rectangles (outlines)
testfillroundrect(); // Draw rounded rectangles (filled)
testdrawtriangle(); // Draw triangles (outlines)
testfilltriangle(); // Draw triangles (filled)
testdrawchar(); // Draw characters of the default font
testdrawstyles(); // Draw 'stylized' characters
testscrolltext(); // Draw scrolling text
testdrawbitmap(); // Draw a small bitmap image
// Invert and restore display, pausing in-between
display.invertDisplay(true);
delay(1000);
display.invertDisplay(false);
delay(1000);
testanimate(logo_bmp, LOGO_WIDTH, LOGO_HEIGHT); // Animate bitmaps
}
Effect *effect;
void setup() {
FastLED.addLeds<NEOPIXEL, DATA_PIN>(_leds, NUM_LEDS);
effect = new PolarFireFly();
effect->setup();
displayDemo();
}
void clear()
{
memset(leds, 0, sizeof(leds));
}
void loop() {
delay(10);
if (shouldClear)
clear();
effect->draw();
remap();
FastLED.show();
//delay(50);
//FastLED.clear();
//FastLED.show();
//delay(50);
}