/* USER CODE BEGIN Header */
/**
**
* @file : main.c
* @brief : Main program body
**
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*s
**
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
/* Private define ------------------------------------------------------------*/
#define TRIGGER_PIN GPIO_PIN_4 // PB4
#define ECHO_PIN GPIO_PIN_5 // PB5
#define LED_PA8 GPIO_PIN_8
#define LED_PA9 GPIO_PIN_9
#define BUZZER GPIO_PIN_10
#define BUTTON GPIO_PIN_10
#define POTENTIOMETER_CHANNEL ADC_CHANNEL_5
#define RX_BUFFER_SIZE 64
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart2;
osThreadId defaultTaskHandle;
/* USER CODE BEGIN PV */
int ledState1 = 0;
int previousButtonState1 = 1;
int ledState2 = 0;
int blinking = 0;
uint32_t duration = 0;
uint32_t adcValue = 0;
uint32_t pwmDutyCycle = 0;
int alertaAtivo = 0;
int sistemaHabilitado = 0;
/* Private variables ---------------------------------------------------------*/
float distInCm = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM2_Init(void);
void StartDefaultTask(void const * argument);
void buttonTaskFcn(void * argument);
void sensorTaskFcn(void * argument);
void potentiometerTaskFcn(void * argument);
void uartCommandTask(void * argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_ADC1_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
HAL_ADC_Start_IT(&hadc1);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
/* USER CODE END 2 */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* Creating tasks for button, sensor and buzzer */
xTaskCreate(buttonTaskFcn, "buttonTask", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);
xTaskCreate(sensorTaskFcn, "sensorTask", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);
xTaskCreate(potentiometerTaskFcn, "potentiometerTask", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);
xTaskCreate(uartCommandTask, "uartCommandTask", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// Main loop remains empty as tasks handle operations
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 10;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_5;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 79;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 255;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LD2_Pin|GPIO_PIN_8|GPIO_PIN_9, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LD2_Pin PA8 PA9 */
GPIO_InitStruct.Pin = LD2_Pin|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA10 */
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PB4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PB5 */
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE BEGIN 4 */
/* USER CODE BEGIN 4 */
/* Task para lidar com comandos UART */
void uartCommandTask(void *argument) {
uint8_t rxBuffer[1];
for (;;) {
if (HAL_UART_Receive(&huart2, rxBuffer, sizeof(rxBuffer), HAL_MAX_DELAY) == HAL_OK) {
char comando = rxBuffer[0];
switch (comando) {
case 'O':
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
sistemaHabilitado = 1;
HAL_UART_Transmit(&huart2, (uint8_t *)"LED PA8 ON e Sensor ON\n\r", strlen("LED PA8 ON e Sensor ON\n\r"), HAL_MAX_DELAY);
break;
case 'F':
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
sistemaHabilitado = 0;
HAL_UART_Transmit(&huart2, (uint8_t *)"LED PA8 OFF e Sensor OFF\n\r", strlen("LED PA8 OFF e Sensor OFF\n\r"), HAL_MAX_DELAY);
break;
default:
HAL_UART_Transmit(&huart2, (uint8_t *)"Comando invalido\n\r", strlen("Comando invalido\n\r"), HAL_MAX_DELAY);
break;
}
}
vTaskDelay(100);
}
}
/* USER CODE END 4 */
/* Task para o botão e LED PA8 */
void buttonTaskFcn(void * argument) {
for(;;) {
int buttonState1 = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_10);
if (buttonState1 == 0 && previousButtonState1 == 1) {
ledState1 = !ledState1;
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, ledState1 ? GPIO_PIN_SET : GPIO_PIN_RESET);
if (ledState1) {
sistemaHabilitado = 1;
HAL_UART_Transmit(&huart2, (uint8_t *)"Sistema habilitado manualmente\n\r", strlen("Sistema habilitado manualmente\n\r"), HAL_MAX_DELAY);
} else {
sistemaHabilitado = 0;
alertaAtivo = 0;
HAL_GPIO_WritePin(GPIOA, LED_PA9, GPIO_PIN_RESET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
HAL_UART_Transmit(&huart2, (uint8_t *)"Sistema desabilitado manualmente\n\r", strlen("Sistema desabilitado manualmente\n\r"), HAL_MAX_DELAY);
}
}
previousButtonState1 = buttonState1;
vTaskDelay(100);
}
}
/* Task para o sensor ultrassônico */
void sensorTaskFcn(void * argument) {
for(;;) {
if (sistemaHabilitado) {
HAL_GPIO_WritePin(GPIOB, TRIGGER_PIN, GPIO_PIN_RESET);
HAL_Delay(2);
HAL_GPIO_WritePin(GPIOB, TRIGGER_PIN, GPIO_PIN_SET);
HAL_Delay(10);
HAL_GPIO_WritePin(GPIOB, TRIGGER_PIN, GPIO_PIN_RESET);
while (HAL_GPIO_ReadPin(GPIOB, ECHO_PIN) == GPIO_PIN_RESET);
uint32_t startTime = HAL_GetTick();
while (HAL_GPIO_ReadPin(GPIOB, ECHO_PIN) == GPIO_PIN_SET);
duration = HAL_GetTick() - startTime;
distInCm = duration * (34300.0 / 2.0);
if (distInCm < 5.0) {
alertaAtivo = 1;
}
if (alertaAtivo) {
ledState2 = !ledState2;
HAL_GPIO_WritePin(GPIOA, LED_PA9, ledState2 ? GPIO_PIN_SET : GPIO_PIN_RESET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, pwmDutyCycle);
}
} else {
alertaAtivo = 0;
HAL_GPIO_WritePin(GPIOA, LED_PA9, GPIO_PIN_RESET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
vTaskDelay(100);
}
}
/* Task para o potenciômetro (sem ajuste direto no PWM) */
void potentiometerTaskFcn(void * argument) {
for(;;) {
if (sistemaHabilitado) {
HAL_ADC_Start(&hadc1);
if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK) {
adcValue = HAL_ADC_GetValue(&hadc1);
}
HAL_ADC_Stop(&hadc1);
pwmDutyCycle = (adcValue * 1000) / 4096;
}
vTaskDelay(100);
}
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END 5 */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */Loading
st-nucleo-c031c6
st-nucleo-c031c6