// Copyright 2022 Charles Lohr, you may use this file or any portions herein under any of the BSD, MIT, or CC0 licenses.
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <SPIFFS.h>
#include "default64mbdtc.h"
// Just default RAM amount is 64MB.
uint32_t ram_amt = 64*1024*1024;
int fail_on_all_faults = 0;
static int64_t SimpleReadNumberInt( const char * number, int64_t defaultNumber );
static uint64_t GetTimeMicroseconds();
static void ResetKeyboardInput();
static void CaptureKeyboardInput();
static uint32_t HandleException( uint32_t ir, uint32_t retval );
static uint32_t HandleControlStore( uint32_t addy, uint32_t val );
static uint32_t HandleControlLoad( uint32_t addy );
static void HandleOtherCSRWrite( uint8_t * image, uint16_t csrno, uint32_t value );
static int32_t HandleOtherCSRRead( uint8_t * image, uint16_t csrno );
static void MiniSleep();
static int IsKBHit();
static int ReadKBByte();
// This is the functionality we want to override in the emulator.
// think of this as the way the emulator's processor is connected to the outside world.
#define MINIRV32WARN( x... ) printf( x );
#define MINIRV32_DECORATE static
#define MINI_RV32_RAM_SIZE ram_amt
#define MINIRV32_IMPLEMENTATION
#define MINIRV32_POSTEXEC( pc, ir, retval ) { if( retval > 0 ) { if( fail_on_all_faults ) { printf( "FAULT\n" ); return 3; } else retval = HandleException( ir, retval ); } }
#define MINIRV32_HANDLE_MEM_STORE_CONTROL( addy, val ) if( HandleControlStore( addy, val ) ) return val;
#define MINIRV32_HANDLE_MEM_LOAD_CONTROL( addy, rval ) rval = HandleControlLoad( addy );
#define MINIRV32_OTHERCSR_WRITE( csrno, value ) HandleOtherCSRWrite( image, csrno, value );
#define MINIRV32_OTHERCSR_READ( csrno, value ) value = HandleOtherCSRRead( image, csrno );
#include "mini-rv32ima.h"
uint8_t * ram_image = 0;
struct MiniRV32IMAState * core;
const char * kernel_command_line = 0;
static void DumpState( struct MiniRV32IMAState * core, uint8_t * ram_image );
int main( int argc, char ** argv )
{
int i;
long long instct = -1;
int show_help = 0;
int time_divisor = 1;
int fixed_update = 0;
int do_sleep = 1;
int single_step = 0;
int dtb_ptr = 0;
const char * image_file_name = 0;
const char * dtb_file_name = 0;
for( i = 1; i < argc; i++ )
{
const char * param = argv[i];
int param_continue = 0; // Can combine parameters, like -lpt x
do
{
if( param[0] == '-' || param_continue )
{
switch( param[1] )
{
case 'm': if( ++i < argc ) ram_amt = SimpleReadNumberInt( argv[i], ram_amt ); break;
case 'c': if( ++i < argc ) instct = SimpleReadNumberInt( argv[i], -1 ); break;
case 'k': if( ++i < argc ) kernel_command_line = argv[i]; break;
case 'f': image_file_name = (++i<argc)?argv[i]:0; break;
case 'b': dtb_file_name = (++i<argc)?argv[i]:0; break;
case 'l': param_continue = 1; fixed_update = 1; break;
case 'p': param_continue = 1; do_sleep = 0; break;
case 's': param_continue = 1; single_step = 1; break;
case 'd': param_continue = 1; fail_on_all_faults = 1; break;
case 't': if( ++i < argc ) time_divisor = SimpleReadNumberInt( argv[i], 1 ); break;
default:
if( param_continue )
param_continue = 0;
else
show_help = 1;
break;
}
}
else
{
show_help = 1;
break;
}
param++;
} while( param_continue );
}
if( show_help || image_file_name == 0 || time_divisor <= 0 )
{
fprintf( stderr, "./mini-rv32imaf [parameters]\n\t-m [ram amount]\n\t-f [running image]\n\t-k [kernel command line]\n\t-b [dtb file, or 'disable']\n\t-c instruction count\n\t-s single step with full processor state\n\t-t time divion base\n\t-l lock time base to instruction count\n\t-p disable sleep when wfi\n\t-d fail out immediately on all faults\n" );
return 1;
}
ram_image = (uint8_t*)malloc( ram_amt );
if( !ram_image )
{
fprintf( stderr, "Error: could not allocate system image.\n" );
return -4;
}
restart:
{
FILE * f = fopen( image_file_name, "rb" );
if( !f || ferror( f ) )
{
fprintf( stderr, "Error: \"%s\" not found\n", image_file_name );
return -5;
}
fseek( f, 0, SEEK_END );
long flen = ftell( f );
fseek( f, 0, SEEK_SET );
if( flen > ram_amt )
{
fprintf( stderr, "Error: Could not fit RAM image (%ld bytes) into %d\n", flen, ram_amt );
return -6;
}
memset( ram_image, 0, ram_amt );
if( fread( ram_image, flen, 1, f ) != 1)
{
fprintf( stderr, "Error: Could not load image.\n" );
return -7;
}
fclose( f );
if( dtb_file_name )
{
if( strcmp( dtb_file_name, "disable" ) == 0 )
{
// No DTB reading.
}
else
{
f = fopen( dtb_file_name, "rb" );
if( !f || ferror( f ) )
{
fprintf( stderr, "Error: \"%s\" not found\n", dtb_file_name );
return -5;
}
fseek( f, 0, SEEK_END );
long dtblen = ftell( f );
fseek( f, 0, SEEK_SET );
dtb_ptr = ram_amt - dtblen - sizeof( struct MiniRV32IMAState );
if( fread( ram_image + dtb_ptr, dtblen, 1, f ) != 1 )
{
fprintf( stderr, "Error: Could not open dtb \"%s\"\n", dtb_file_name );
return -9;
}
fclose( f );
}
}
else
{
// Load a default dtb.
dtb_ptr = ram_amt - sizeof(default64mbdtb) - sizeof( struct MiniRV32IMAState );
memcpy( ram_image + dtb_ptr, default64mbdtb, sizeof( default64mbdtb ) );
if( kernel_command_line )
{
strncpy( (char*)( ram_image + dtb_ptr + 0xc0 ), kernel_command_line, 54 );
}
}
}
CaptureKeyboardInput();
// The core lives at the end of RAM.
core = (struct MiniRV32IMAState *)(ram_image + ram_amt - sizeof( struct MiniRV32IMAState ));
core->pc = MINIRV32_RAM_IMAGE_OFFSET;
core->regs[10] = 0x00; //hart ID
core->regs[11] = dtb_ptr?(dtb_ptr+MINIRV32_RAM_IMAGE_OFFSET):0; //dtb_pa (Must be valid pointer) (Should be pointer to dtb)
core->extraflags |= 3; // Machine-mode.
if( dtb_file_name == 0 )
{
// Update system ram size in DTB (but if and only if we're using the default DTB)
// Warning - this will need to be updated if the skeleton DTB is ever modified.
uint32_t * dtb = (uint32_t*)(ram_image + dtb_ptr);
if( dtb[0x13c/4] == 0x00c0ff03 )
{
uint32_t validram = dtb_ptr;
dtb[0x13c/4] = (validram>>24) | ((( validram >> 16 ) & 0xff) << 8 ) | (((validram>>8) & 0xff ) << 16 ) | ( ( validram & 0xff) << 24 );
}
}
// Image is loaded.
uint64_t rt;
uint64_t lastTime = (fixed_update)?0:(GetTimeMicroseconds()/time_divisor);
int instrs_per_flip = single_step?1:1024;
for( rt = 0; rt < instct+1 || instct < 0; rt += instrs_per_flip )
{
uint64_t * this_ccount = ((uint64_t*)&core->cyclel);
uint32_t elapsedUs = 0;
if( fixed_update )
elapsedUs = *this_ccount / time_divisor - lastTime;
else
elapsedUs = GetTimeMicroseconds()/time_divisor - lastTime;
lastTime += elapsedUs;
if( single_step )
DumpState( core, ram_image);
int ret = MiniRV32IMAStep( core, ram_image, 0, elapsedUs, instrs_per_flip ); // Execute upto 1024 cycles before breaking out.
switch( ret )
{
case 0: break;
case 1: if( do_sleep ) MiniSleep(); *this_ccount += instrs_per_flip; break;
case 3: instct = 0; break;
case 0x7777: goto restart; //syscon code for restart
case 0x5555: printf( "POWEROFF@0x%08x%08x\n", core->cycleh, core->cyclel ); return 0; //syscon code for power-off
default: printf( "Unknown failure\n" ); break;
}
}
DumpState( core, ram_image);
}
//////////////////////////////////////////////////////////////////////////
// Platform-specific functionality
//////////////////////////////////////////////////////////////////////////
#if defined(WINDOWS) || defined(WIN32) || defined(_WIN32)
#include <windows.h>
#include <conio.h>
#define strtoll _strtoi64
static void CaptureKeyboardInput()
{
system(""); // Poorly documented tick: Enable VT100 Windows mode.
}
static void ResetKeyboardInput()
{
}
static void MiniSleep()
{
Sleep(1);
}
static uint64_t GetTimeMicroseconds()
{
static LARGE_INTEGER lpf;
LARGE_INTEGER li;
if( !lpf.QuadPart )
QueryPerformanceFrequency( &lpf );
QueryPerformanceCounter( &li );
return ((uint64_t)li.QuadPart * 1000000LL) / (uint64_t)lpf.QuadPart;
}
static int IsKBHit()
{
return _kbhit();
}
static int ReadKBByte()
{
// This code is kind of tricky, but used to convert windows arrow keys
// to VT100 arrow keys.
static int is_escape_sequence = 0;
int r;
if( is_escape_sequence == 1 )
{
is_escape_sequence++;
return '[';
}
r = _getch();
if( is_escape_sequence )
{
is_escape_sequence = 0;
switch( r )
{
case 'H': return 'A'; // Up
case 'P': return 'B'; // Down
case 'K': return 'D'; // Left
case 'M': return 'C'; // Right
case 'G': return 'H'; // Home
case 'O': return 'F'; // End
default: return r; // Unknown code.
}
}
else
{
switch( r )
{
case 13: return 10; //cr->lf
case 224: is_escape_sequence = 1; return 27; // Escape arrow keys
default: return r;
}
}
}
#else
#include <sys/ioctl.h>
#include <termios.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
static void CtrlC()
{
DumpState( core, ram_image);
exit( 0 );
}
// Override keyboard, so we can capture all keyboard input for the VM.
static void CaptureKeyboardInput()
{
// Hook exit, because we want to re-enable keyboard.
atexit(ResetKeyboardInput);
//signal(SIGINT, CtrlC);
struct termios term;
tcgetattr(0, &term);
term.c_lflag &= ~(ICANON | ECHO); // Disable echo as well
tcsetattr(0, TCSANOW, &term);
}
static void ResetKeyboardInput()
{
// Re-enable echo, etc. on keyboard.
struct termios term;
tcgetattr(0, &term);
term.c_lflag |= ICANON | ECHO;
tcsetattr(0, TCSANOW, &term);
}
static void MiniSleep()
{
usleep(500);
}
static uint64_t GetTimeMicroseconds()
{
struct timeval tv;
gettimeofday( &tv, 0 );
return tv.tv_usec + ((uint64_t)(tv.tv_sec)) * 1000000LL;
}
static int is_eofd;
static int ReadKBByte()
{
if( is_eofd ) return 0xffffffff;
char rxchar = 0;
int rread = read(fileno(stdin), (char*)&rxchar, 1);
if( rread > 0 ) // Tricky: getchar can't be used with arrow keys.
return rxchar;
else
return -1;
}
static int IsKBHit()
{
if( is_eofd ) return -1;
int byteswaiting;
//ioctl(0, FIONREAD, &byteswaiting);
if( !byteswaiting && write( fileno(stdin), 0, 0 ) != 0 ) { is_eofd = 1; return -1; } // Is end-of-file for
return !!byteswaiting;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Rest of functions functionality
//////////////////////////////////////////////////////////////////////////
static uint32_t HandleException( uint32_t ir, uint32_t code )
{
// Weird opcode emitted by duktape on exit.
if( code == 3 )
{
// Could handle other opcodes here.
}
return code;
}
static uint32_t HandleControlStore( uint32_t addy, uint32_t val )
{
if( addy == 0x10000000 ) //UART 8250 / 16550 Data Buffer
{
printf( "%c", val );
fflush( stdout );
}
else if( addy == 0x11004004 ) //CLNT
core->timermatchh = val;
else if( addy == 0x11004000 ) //CLNT
core->timermatchl = val;
else if( addy == 0x11100000 ) //SYSCON (reboot, poweroff, etc.)
{
core->pc = core->pc + 4;
return val; // NOTE: PC will be PC of Syscon.
}
return 0;
}
static uint32_t HandleControlLoad( uint32_t addy )
{
// Emulating a 8250 / 16550 UART
if( addy == 0x10000005 )
return 0x60 | IsKBHit();
else if( addy == 0x10000000 && IsKBHit() )
return ReadKBByte();
else if( addy == 0x1100bffc ) // https://chromitem-soc.readthedocs.io/en/latest/clint.html
return core->timerh;
else if( addy == 0x1100bff8 )
return core->timerl;
return 0;
}
static void HandleOtherCSRWrite( uint8_t * image, uint16_t csrno, uint32_t value )
{
if( csrno == 0x136 )
{
printf( "%d", value ); fflush( stdout );
}
if( csrno == 0x137 )
{
printf( "%08x", value ); fflush( stdout );
}
else if( csrno == 0x138 )
{
//Print "string"
uint32_t ptrstart = value - MINIRV32_RAM_IMAGE_OFFSET;
uint32_t ptrend = ptrstart;
if( ptrstart >= ram_amt )
printf( "DEBUG PASSED INVALID PTR (%08x)\n", value );
while( ptrend < ram_amt )
{
if( image[ptrend] == 0 ) break;
ptrend++;
}
if( ptrend != ptrstart )
fwrite( image + ptrstart, ptrend - ptrstart, 1, stdout );
}
else if( csrno == 0x139 )
{
putchar( value ); fflush( stdout );
}
}
static int32_t HandleOtherCSRRead( uint8_t * image, uint16_t csrno )
{
if( csrno == 0x140 )
{
if( !IsKBHit() ) return -1;
return ReadKBByte();
}
return 0;
}
static int64_t SimpleReadNumberInt( const char * number, int64_t defaultNumber )
{
if( !number || !number[0] ) return defaultNumber;
int radix = 10;
if( number[0] == '0' )
{
char nc = number[1];
number+=2;
if( nc == 0 ) return 0;
else if( nc == 'x' ) radix = 16;
else if( nc == 'b' ) radix = 2;
else { number--; radix = 8; }
}
char * endptr;
uint64_t ret = strtoll( number, &endptr, radix );
if( endptr == number )
{
return defaultNumber;
}
else
{
return ret;
}
}
static void DumpState( struct MiniRV32IMAState * core, uint8_t * ram_image )
{
uint32_t pc = core->pc;
uint32_t pc_offset = pc - MINIRV32_RAM_IMAGE_OFFSET;
uint32_t ir = 0;
printf( "PC: %08x ", pc );
if( pc_offset >= 0 && pc_offset < ram_amt - 3 )
{
ir = *((uint32_t*)(&((uint8_t*)ram_image)[pc_offset]));
printf( "[0x%08x] ", ir );
}
else
printf( "[xxxxxxxxxx] " );
uint32_t * regs = core->regs;
printf( "Z:%08x ra:%08x sp:%08x gp:%08x tp:%08x t0:%08x t1:%08x t2:%08x s0:%08x s1:%08x a0:%08x a1:%08x a2:%08x a3:%08x a4:%08x a5:%08x ",
regs[0], regs[1], regs[2], regs[3], regs[4], regs[5], regs[6], regs[7],
regs[8], regs[9], regs[10], regs[11], regs[12], regs[13], regs[14], regs[15] );
printf( "a6:%08x a7:%08x s2:%08x s3:%08x s4:%08x s5:%08x s6:%08x s7:%08x s8:%08x s9:%08x s10:%08x s11:%08x t3:%08x t4:%08x t5:%08x t6:%08x\n",
regs[16], regs[17], regs[18], regs[19], regs[20], regs[21], regs[22], regs[23],
regs[24], regs[25], regs[26], regs[27], regs[28], regs[29], regs[30], regs[31] );
}
void setup() {
// Initialize SPIFFS
if (!SPIFFS.begin(true)) {
Serial.println("SPIFFS Mount Failed");
return;
}
char* arg1 = "program";
char* arg2 = "-m";
char* arg3 = "16K";
char* arg4 = "-f";
char* arg5 = "test.bin";
char* argv[] = {arg1,arg2,arg3,arg4,arg5};
main(5, argv);
}
void loop() {
}