#include <DHT.h>
#include <Arduino.h>
#include <SPI.h>
#include <esp_system.h> // Include the ESP32 system library for memory functions
#include <esp_heap_caps.h> // Include for detailed memory statistics
#define DHTPIN 4
#define DHTTYPE DHT22
DHT dht(DHTPIN, DHTTYPE);
#define TRIGPIN 12
#define ECHOPIN 14
const float a = 0.9;
const float pi = 3.14;
byte key3[]= "123456789abcdeff";
byte Sbox[16][16]={
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, // 0x00
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, // 0x10
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, // 0x20
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, // 0x30
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, // 0x40
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, // 0x50
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, // 0x60
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, // 0x70
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, // 0x80
0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, // 0x90
0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, // 0xA0
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, // 0xB0
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, // 0xC0
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, // 0xD0
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, // 0xE0
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, // 0xF0
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
byte InvSbox[16][16]={
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, // 0x00
0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, // 0x10
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, // 0x20
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, // 0x30
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, // 0x40
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, // 0x50
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, // 0x60
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, // 0x70
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, // 0x80
0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, // 0x90
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, // 0xA0
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, // 0xB0
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, // 0xC0
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, // 0xD0
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, // 0xE0
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, // 0xF0
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
uint8_t rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36};
void setup() {
Serial.begin(115200);
dht.begin();
pinMode(TRIGPIN, OUTPUT);
pinMode(ECHOPIN, INPUT);
Serial.println("Setup Complete.");
}
void expandKey(uint8_t *initialKey, uint8_t *expandedKeys, int rounds) {
memcpy(expandedKeys, initialKey, 16);
for (int round = 1; round <= rounds; round++) {
uint8_t temp[4];
// Rotate and substitute the last column of the previous key
temp[0] = Sbox[expandedKeys[(round - 1) * 16 + 13] / 16][expandedKeys[(round - 1) * 16 + 13] % 16];
temp[1] = Sbox[expandedKeys[(round - 1) * 16 + 14] / 16][expandedKeys[(round - 1) * 16 + 14] % 16];
temp[2] = Sbox[expandedKeys[(round - 1) * 16 + 15] / 16][expandedKeys[(round - 1) * 16 + 15] % 16];
temp[3] = Sbox[expandedKeys[(round - 1) * 16 + 12] / 16][expandedKeys[(round - 1) * 16 + 12] % 16]; // Rotate
temp[0] ^= rcon[round - 1]; // Add round constant
// Generate the next round key
for (int i = 0; i < 16; i++) {
if (i < 4) {
expandedKeys[round * 16 + i] = expandedKeys[(round - 1) * 16 + i] ^ temp[i];
} else {
expandedKeys[round * 16 + i] = expandedKeys[(round - 1) * 16 + i] ^ expandedKeys[round * 16 + i - 4];
}
}
}
}
byte gfMul(byte a, byte b) {
byte p = 0;
byte hiBitSet;
for (byte i = 0; i < 8; i++) {
if (b & 1) {
p ^= a;
}
hiBitSet = a & 0x80;
a <<= 1;
if (hiBitSet) {
a ^= 0x1b; // AES modulo polynomial x^8 + x^4 + x^3 + x + 1
}
b >>= 1;
}
return p;
}
void applyPadding(byte *paddedInput, const byte *input, int inputLen) {
// Copy the input data into the padded block
memcpy(paddedInput, input, inputLen);
// Apply zero padding
for (int i = inputLen; i < 16; i++) {
paddedInput[i] = 0x00;
}
}
void removePadding(byte *output, const byte *paddedInput) {
int unpaddedLength = 16;
// Find the unpadded length by detecting the first 0x00 from the end
while (unpaddedLength > 0 && paddedInput[unpaddedLength - 1] == 0x00) {
unpaddedLength--;
}
// Copy the data excluding the padding
memcpy(output, paddedInput, unpaddedLength);
}
void encryptData(byte *output, const byte *input, int inputLen) {
byte paddedInput[16];
applyPadding(paddedInput, input, inputLen); // Apply padding
byte state[16];
memcpy(state, paddedInput, 16);
byte expandedKeys[176]; // Expanded key array
expandKey(key3, expandedKeys, 10); // Expand the keys for encryption
// Initial Round: AddRoundKey
for (int i = 0; i < 16; i++) {
state[i] ^= key3[i]; // Use expanded key
}
// Main Rounds
for (int round = 1; round < 10; round++) {
// SubBytes
for (int i = 0; i < 16; i++) {
state[i] = Sbox[state[i] / 16][state[i] % 16];
}
// ShiftRows
byte temp[16];
temp[0] = state[0];
temp[1] = state[5];
temp[2] = state[10];
temp[3] = state[15];
temp[4] = state[4];
temp[5] = state[9];
temp[6] = state[14];
temp[7] = state[3];
temp[8] = state[8];
temp[9] = state[13];
temp[10] = state[2];
temp[11] = state[7];
temp[12] = state[12];
temp[13] = state[1];
temp[14] = state[6];
temp[15] = state[11];
memcpy(state, temp, 16);
// MixColumns
for (int col = 0; col < 4; col++) {
temp[col * 4 + 0] = gfMul(state[col * 4 + 0], 2) ^ gfMul(state[col * 4 + 1], 3) ^ state[col * 4 + 2] ^ state[col * 4 + 3];
temp[col * 4 + 1] = state[col * 4 + 0] ^ gfMul(state[col * 4 + 1], 2) ^ gfMul(state[col * 4 + 2], 3) ^ state[col * 4 + 3];
temp[col * 4 + 2] = state[col * 4 + 0] ^ state[col * 4 + 1] ^ gfMul(state[col * 4 + 2], 2) ^ gfMul(state[col * 4 + 3], 3);
temp[col * 4 + 3] = gfMul(state[col * 4 + 0], 3) ^ state[col * 4 + 1] ^ state[col * 4 + 2] ^ gfMul(state[col * 4 + 3], 2);
}
memcpy(state, temp, 16);
// AddRoundKey
for (int i = 0; i < 16; i++) {
state[i] ^= expandedKeys[round * 16 + i];
}
}
// Final Round
for (int i = 0; i < 16; i++) {
state[i] = Sbox[state[i] / 16][state[i] % 16];
}
byte temp[16];
temp[0] = state[0];
temp[1] = state[5];
temp[2] = state[10];
temp[3] = state[15];
temp[4] = state[4];
temp[5] = state[9];
temp[6] = state[14];
temp[7] = state[3];
temp[8] = state[8];
temp[9] = state[13];
temp[10] = state[2];
temp[11] = state[7];
temp[12] = state[12];
temp[13] = state[1];
temp[14] = state[6];
temp[15] = state[11];
memcpy(state, temp, 16);
// AddRoundKey
for (int i = 0; i < 16; i++) {
state[i] ^= expandedKeys[10 * 16 + i]; // Final expanded key
}
// Output the encrypted state
memcpy(output, state, 16);
}
/*void encryptECB(byte *output, const byte *input, int length) {
int numBlocks = (length + 15) / 16; // Calculate the number of 16-byte blocks
byte buffer[16];
for (int i = 0; i < numBlocks; i++) {
int blockSize = (i == numBlocks - 1 && length % 16 != 0) ? length % 16 : 16;
// Apply padding for the last block (only when necessary)
if (i == numBlocks - 1 && length % 16 != 0) {
applyPadding(buffer, &input[i * 16], blockSize);
encryptData(&output[i * 16], buffer); // Encrypt the padded block
} else {
encryptData(&output[i * 16], &input[i * 16]); // Encrypt the full 16-byte block
}
}
}
*/
/*void encryptECB(byte *output, const byte *input, int length) {
byte buffer[16] = {0};
// Copy input data to padded block
memcpy(buffer, input, length);
// Encrypt the padded block
encryptData(output, buffer);
}*/
void decryptData(byte *output, const byte *input) {
byte state[16];
memcpy(state, input, 16);
byte expandedKeys[176]; // Expanded key array
expandKey(key3, expandedKeys, 10); // Expand the keys for decryption
// Initial Round: AddRoundKey
for (int i = 0; i < 16; i++) {
state[i] ^= expandedKeys[10 * 16 + i]; // Use the last expanded key
}
// Final Round (without MixColumns)
// Inverse ShiftRows
byte temp[16];
temp[0] = state[0];
temp[1] = state[13];
temp[2] = state[10];
temp[3] = state[7];
temp[4] = state[4];
temp[5] = state[1];
temp[6] = state[14];
temp[7] = state[11];
temp[8] = state[8];
temp[9] = state[5];
temp[10] = state[2];
temp[11] = state[15];
temp[12] = state[12];
temp[13] = state[9];
temp[14] = state[6];
temp[15] = state[3];
memcpy(state, temp, 16);
// Inverse SubBytes
for (int i = 0; i < 16; i++) {
state[i] = InvSbox[state[i] / 16][state[i] % 16];
}
// Main Rounds
for (int round = 9; round > 0; round--) {
// AddRoundKey
for (int i = 0; i < 16; i++) {
state[i] ^= expandedKeys[round * 16 + i];
}
// Inverse MixColumns
for (int col = 0; col < 4; col++) {
temp[col * 4 + 0] = gfMul(state[col * 4 + 0], 14) ^ gfMul(state[col * 4 + 1], 11) ^ gfMul(state[col * 4 + 2], 13) ^ gfMul(state[col * 4 + 3], 9);
temp[col * 4 + 1] = gfMul(state[col * 4 + 0], 9) ^ gfMul(state[col * 4 + 1], 14) ^ gfMul(state[col * 4 + 2], 11) ^ gfMul(state[col * 4 + 3], 13);
temp[col * 4 + 2] = gfMul(state[col * 4 + 0], 13) ^ gfMul(state[col * 4 + 1], 9) ^ gfMul(state[col * 4 + 2], 14) ^ gfMul(state[col * 4 + 3], 11);
temp[col * 4 + 3] = gfMul(state[col * 4 + 0], 11) ^ gfMul(state[col * 4 + 1], 13) ^ gfMul(state[col * 4 + 2], 9) ^ gfMul(state[col * 4 + 3], 14);
}
memcpy(state, temp, 16);
// Inverse ShiftRows
temp[0] = state[0];
temp[1] = state[13];
temp[2] = state[10];
temp[3] = state[7];
temp[4] = state[4];
temp[5] = state[1];
temp[6] = state[14];
temp[7] = state[11];
temp[8] = state[8];
temp[9] = state[5];
temp[10] = state[2];
temp[11] = state[15];
temp[12] = state[12];
temp[13] = state[9];
temp[14] = state[6];
temp[15] = state[3];
memcpy(state, temp, 16);
// Inverse SubBytes
for (int i = 0; i < 16; i++) {
state[i] = InvSbox[state[i] / 16][state[i] % 16];
}
}
// Initial Round: AddRoundKey
for (int i = 0; i < 16; i++) {
state[i] ^= key3[i];
}
// Remove padding from the decrypted state
removePadding(output, state);
}
// New function for SAC
void testSAC(byte *input) {
byte flippedInput[16];
byte encryptedOriginal[16], encryptedFlipped[16];
byte diffCount = 0;
// Flip each bit one at a time
for (int i = 0; i < 16; i++) {
for (int bit = 0; bit < 8; bit++) {
memcpy(flippedInput, input, 16);
flippedInput[i] ^= (1 << bit); // Flip one bit
// Encrypt the original and flipped inputs
encryptData(encryptedOriginal, input,16); // Encrypt the original data
encryptData(encryptedFlipped, flippedInput,16); // Encrypt the flipped data
// Count the bit differences between the encrypted original and flipped
for (int j = 0; j < 16; j++) {
byte diff = encryptedOriginal[j] ^ encryptedFlipped[j];
diffCount += __builtin_popcount(diff);
}
}
}
float avalanchePercentage = (diffCount / 128.0) * 100.0; // 128 bits in total (16 bytes * 8 bits per byte)
// Define the pass threshold (e.g., 50%)
float passThreshold = 50.0; // 50% bit difference threshold for passing
// Print result based on the avalanche percentage
Serial.print("SAC Avalanche Percentage: ");
Serial.println(avalanchePercentage);
if (avalanchePercentage >= passThreshold) {
Serial.println("Test Passed");
} else {
Serial.println("Test Failed");
}
}
float readDistance() {
digitalWrite(TRIGPIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIGPIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGPIN, LOW);
float duration = pulseIn(ECHOPIN, HIGH);
return duration * 0.034 / 2; // Convert to cm
}
void loop() {
float temperature = dht.readTemperature();
float humidity = dht.readHumidity();
float keyexpansiontime = 0 ;
if (isnan(temperature) || isnan(humidity)) {
Serial.println("Failed to read from DHT sensor!");
return;
}
float distance = readDistance();
String dataTypes[] = {"Temperature", "Humidity", "Distance"};
String values[] = {
String(temperature, 2),
String(humidity, 2),
String(distance, 2)
};
byte expandedKeys[176]; // Expanded key array
for (int i = 0; i < 3; i++) {
Serial.println("\nProcessing: " + dataTypes[i]);
byte input[16] = {0};
byte encryptedData[16] = {0};
byte decryptedData[16] = {0};
String data = values[i];
for (int j = 0; j < data.length() && j < 16; j++) {
input[j] = data[j];
}
unsigned long startkeyexpansion = micros();
expandKey(key3, expandedKeys, 10); // Expand the keys for encryption
unsigned long endkeyexpansion = micros();
keyexpansiontime = endkeyexpansion - startkeyexpansion ;
// Using encryptECB instead of encryptData
size_t memoryBeforeEncryption = ESP.getFreeHeap();
unsigned long startTime2 = micros();
encryptData(encryptedData, input, data.length()); // Using encryptECB
unsigned long endencryption = micros();
unsigned long encryptionTime = endencryption - startTime2;
size_t memoryAfterEncryption = ESP.getFreeHeap();
size_t memoryConsumedEncryption = memoryBeforeEncryption - memoryAfterEncryption;
// Using decryptECB instead of decryptData
size_t memoryBeforeDecryption = ESP.getFreeHeap();
unsigned long startTime1 = micros();
decryptData(decryptedData, encryptedData); // Using decryptECB
unsigned long enddecryption = micros();
unsigned long decryptionTime =enddecryption - startTime1;
size_t memoryAfterDecryption = ESP.getFreeHeap();
size_t memoryConsumedDecryption = memoryBeforeDecryption - memoryAfterDecryption;
float encryptionThroughput = (16.0 / encryptionTime) * 1e6;
float decryptionThroughput = (16.0 / decryptionTime) * 1e6;
Serial.print("Original Data: ");
Serial.println(data);
Serial.print("Encrypted Data: ");
for (int j = 0; j < 16; j++) {
Serial.printf("%02x", encryptedData[j]);
}
Serial.println();
Serial.print("Decrypted Data: ");
Serial.println((char *)decryptedData);
Serial.print("Key expansion Time (us): ");
Serial.println(keyexpansiontime);
Serial.print("Encryption Time (us): ");
Serial.println(encryptionTime);
Serial.print("Decryption Time (us): ");
Serial.println(decryptionTime);
Serial.print("Encryption Throughput (bytes/sec): ");
Serial.println(encryptionThroughput);
Serial.print("Decryption Throughput (bytes/sec): ");
Serial.println(decryptionThroughput);
//Serial.print("Memory Consumed during Encryption (bytes): ");
//Serial.println(memoryConsumedEncryption);
//Serial.print("Memory Consumed during Decryption (bytes): ");
//Serial.println(memoryConsumedDecryption);
// Test SAC on encrypted data
testSAC(input);
}
delay(5000);
}