/*
* Power Monitor
*
* Records the power supply voltage every hour, logged in EEPROM.
* When a button is pressed the last voltage is displayed in a large font.
* A graph of the last five days readings is shown over the readout.
* The graph's y axis range is from 0 to 6 volts.
*
* When using Spence Konde's ATTinyCore https://github.com/SpenceKonde/ATTinyCore
* and using a chip without Optiboot, with LTO enabled, this sketch takes 5782 bytes of flash.
*
* The battery level is measured roughly every hour
* and the measured voltages are stored in EEPROM
*
* When a button is pressed, the display shows a graph of the latest readings.
*
* Power on:
* check eeprom is set up to record log of voltages
* record current voltage
* set up wake up interupts on button press and watch dog timer
* set up the screen and display the graph and latest voltage
* Go to sleep
*
* Every 8 seconds the watch dog timer wakes up the device
* If the number of wake-ups means an hour has passed,
* then the current voltage is logged.
* If the screen has been on for 2 wake-ups then turn off the screen.
* Go to sleep
*
* If a button is pressed, the screen is turned on,
* and the device goes back to sleep.
*/
#include "TinyDebug.h"
#include <avr/sleep.h>
#include <EEPROM.h>
#include <Tiny4kOLED.h>
#include "eeprom_contents.h"
// Large font containing only digits.
// TinyOLED-Fonts library needed.
// https://github.com/datacute/TinyOLED-Fonts
#include "Sansita_Swashed_Regular_57_Digits.h"
// Routines to set and clear bits (used in the sleep code)
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
static bool eepromOk = false;
static uint8_t currentContrast = BATTERY_DEFAULT_CONTRAST;
static uint8_t currentAddress = BATTERY_READINGS_ADDRESS;
#define MAIN_BUTTON 4
#define ENTER_BUTTON 3
// Variables for the Sleep/power down modes:
volatile boolean f_wdt = 0;
static int wdt_counter = 0;
static int graph_display_counter = 0;
// The watch dog timer wakes up the device every 8 seconds
// The device graphs the last 120 readings
// 10800 * 8 seconds = 1 day. 120 days = 4 months, mark every 7th or 30th
// 450 * 8 seconds = 1 hour. 120 hours = 5 days, mark every 24th
// 75 * 8 seconds = 10 minutes. 1200 minutes = 20 hours, mark every 6th
// 15 * 8 seconds = 2 minutes. 240 minutes = 4 hours, mark every 30th
#define REPORT_PERIOD 450
#define GRAPH_TICK_COUNT 24
// Watchdog Interrupt Service / is executed when watchdog timed out
ISR(WDT_vect) {
f_wdt=1; // set global flag
}
ISR(PCINT0_vect) {}
void setup() {
Debug.begin();
Debug.println(F("Tiny4kOLED Demo of a graph on top of text."));
Debug.println(F("Limitations of wokwi:"));
Debug.println(F("- The EEPROM doesn't remember its values"));
Debug.println(F("- The measured voltage is always 5V, hence a straight line"));
Debug.println(F("- Sleeping doesn't seem to work"));
Debug.println(F("- The watchdog timer doesn't appear to be working"));
Debug.println(F("- The oled can't be turned off"));
setupADC();
setupInputs();
setupOLED();
setupFromEEPROM();
setupWDT();
oled.setContrast(currentContrast);
displayGraph();
}
static void setupADC() {
ADMUX = 0b1100<<MUX0; // Vcc Ref, Measure bandgap voltage (1.1)
//ADCSRA = 1<<ADEN | 4<<ADPS0; // Enable, 62.5kHz ADC clock (16x prescalar)
ADCSRA = 4<<ADPS0; // Disabled, 62.5kHz ADC clock (16x prescalar)
}
void setupInputs() {
pinMode(MAIN_BUTTON, INPUT_PULLUP);
pinMode(ENTER_BUTTON, INPUT_PULLUP);
GIMSK = 1 << PCIE; // Enable pin-change interrupt
PCMSK = (1 << MAIN_BUTTON) | (1 << ENTER_BUTTON);
}
void setupOLED(void) {
oled.begin(128, 64, sizeof(tiny4koled_init_128x64br), tiny4koled_init_128x64br);
oled.clear();
oled.setFont(FONTSANSITASWASHEDREGULAR57DIGITS);
}
static void setupFromEEPROM() {
eepromOk = EEPROM.read(BATTERY_MAGIC_ADDRESS ) == BATTERY_MAGIC0 &&
EEPROM.read(BATTERY_MAGIC_ADDRESS + 1) == BATTERY_MAGIC1 &&
EEPROM.read(BATTERY_MAGIC_ADDRESS + 2) == BATTERY_MAGIC2 &&
EEPROM.read(BATTERY_MAGIC_ADDRESS + 3) == BATTERY_MAGIC3;
if (eepromOk) {
currentContrast = EEPROM.read(BATTERY_CONTRAST_ADDRESS);
currentAddress = EEPROM.read(BATTERY_CURRENT_ADDRESS);
recordVoltage(); // Write a new value at power-on so that
} else {
settingsResetAction();
}
}
static void setupWDT(void) {
int ii = 9;
byte bb;
if (ii > 9 ) ii=9;
bb=ii & 7;
if (ii > 7) bb|= (1<<5);
//bb|= (1<<WDCE);
MCUSR &= ~(1<<WDRF);
// start timed sequence
WDTCR |= (1<<WDCE) | (1<<WDE);
// set new watchdog timeout value
WDTCR = bb;
WDTCR |= _BV(WDIE);
}
void loop() {
if (!processButtonInputs()) {
system_sleep();
}
if (f_wdt == 1) {
Debug.println(F("This is never hit?"));
f_wdt=0;
wdt_counter++;
if (wdt_counter == REPORT_PERIOD) {
wdt_counter = 0;
recordVoltage();
}
if (graph_display_counter > 0) {
graph_display_counter--;
if (graph_display_counter == 0) {
oled.off();
}
}
}
}
bool processButtonInputs(void) {
bool mainButtonIsDown = digitalRead(MAIN_BUTTON) == LOW;
if (mainButtonIsDown) {
displayGraph();
}
bool enterButtonIsDown = digitalRead(ENTER_BUTTON) == LOW;
if (enterButtonIsDown) {
displayGraph();
}
return mainButtonIsDown || enterButtonIsDown;
}
static uint8_t ticks[] = {
0x04, // 5.5V to 6.2V
0x10, // 4.7V to 5.4V
0x40, // 3.9V to 4.6V
0x00, // 3.1V to 3.8V
0x01, // 2.3V to 3.0V
0x04, // 1.5V to 2.2V
0x10, // 0.7V to 1.4V
0x40 // bottom ticks line, 0.0 to 0.6 V
};
static uint8_t overlayGraph(uint8_t x, uint8_t y, uint8_t b) {
int itemAddress = currentAddress + x - 2;
if (itemAddress >= 128) itemAddress -= (128 - BATTERY_READINGS_ADDRESS);
uint8_t bottomBit = (7-y) << 3;
uint8_t reading = EEPROM.read(itemAddress);
uint8_t v = reading; // mask out pixel below graph
if ((v >= bottomBit) && (v < (bottomBit + 8))) {
b &= ~(1 << (7 - (v - bottomBit)));
}
v++; // Shift graph up 1 pixel above ticks line
if ((v >= bottomBit) && (v < (bottomBit + 8))) {
b |= 1 << (7 - (v - bottomBit));
}
v++;// mask out pixel above graph
if ((v >= bottomBit) && (v < (bottomBit + 8))) {
b &= ~(1 << (7 - (v - bottomBit)));
}
return b;
}
static void displayGraph() {
uint8_t reading;
for (uint8_t line = 0; line < 8; line++) {
uint8_t bottomBit = (7-line) << 3;
oled.setCursor(0,line);
oled.startData();
oled.sendData(ticks[line]);
oled.sendData(0xFF);
int itemAddress = currentAddress; // oldest reading
uint8_t tick_column = 0;
do {
reading = EEPROM.read(itemAddress);
uint8_t v = reading + 1; // Shift graph up 1 pixel above ticks line
uint8_t b = 0;
if ((v >= bottomBit) && (v < (bottomBit + 8))) {
b = 1 << (7 - (v - bottomBit));
}
if (line == 7) {
b |= 0x40;
tick_column++;
if (tick_column == GRAPH_TICK_COUNT) {
b |= 0x80;
tick_column = 0;
}
}
oled.sendData(b);
itemAddress++;
if (itemAddress >= 128) itemAddress = BATTERY_READINGS_ADDRESS;
} while (itemAddress != currentAddress);
oled.sendData(0xFF);
oled.sendData(ticks[line]);
oled.endData();
}
// This can be made more efficient by not drawing the following large portion of the graph twice.
oled.setCursor(27,1);
oled.setCombineFunction(&overlayGraph);
oled.print((float)reading/10.0, 1);
oled.setCombineFunction(NULL);
oled.on();
graph_display_counter = 2;
}
/*
static void setContrast(void) {
oled.setContrast(currentContrast);
if (eepromOk) {
EEPROM.write(BATTERY_CONTRAST_ADDRESS, currentContrast);
}
}
*/
void settingsResetAction(void) {
// EEPROM Header
for (uint16_t offset = 0; offset < sizeof(header); offset++) {
EEPROM.write(offset, pgm_read_byte(&header[offset]));
}
// Default all readings to current voltage value
uint16_t result = readADC();
//result = 1126400L / result; // Calculate Vcc (in mV); 1.1*1024*1000
result = 11264L / result; // 10ths of a volt
for (uint16_t address = sizeof(header); address < 128; address++) {
EEPROM.write(address, (byte)result);
}
eepromOk = true;
currentAddress = BATTERY_READINGS_ADDRESS;
currentContrast = BATTERY_DEFAULT_CONTRAST;
}
static void recordVoltage(void) {
uint16_t result = readADC();
//result = 1126400L / result; // Calculate Vcc (in mV); 1.1*1024*1000
result = 11264L / result; // 10ths of a volt
EEPROM.write(currentAddress, (byte)result);
currentAddress++;
if (currentAddress >= 128) {
currentAddress = BATTERY_READINGS_ADDRESS;
}
EEPROM.write(BATTERY_CURRENT_ADDRESS, currentAddress);
}
static uint16_t readADC() {
uint8_t low,high;
sbi(ADCSRA,ADEN); // switch Analog to Digitalconverter ON
ADCSRA = ADCSRA | 1<<ADSC; // Start
do {} while (ADCSRA & 1<<ADSC); // Wait while conversion in progress
low = ADCL;
high = ADCH;
cbi(ADCSRA,ADEN); // switch Analog to Digitalconverter OFF
return ((uint16_t)high<<8 | low);
}
void system_sleep() {
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
//sleep_enable();
sleep_mode(); // System actually sleeps here
//sleep_disable(); // System continues execution here when watchdog timed out
}