# AI-Powered Drone Simulation (ESP32 + TinyML)
# Simulating AI object tracking and motor control
import time
import random
# Simulating AI object tracking with predefined data
class AIObjectTracker:
def __init__(self):
self.target_position = 50 # Simulated object position (0-100)
def get_object_position(self):
# Simulating AI detecting object movement
self.target_position += random.randint(-5, 5)
self.target_position = max(0, min(100, self.target_position))
return self.target_position
# Simulated PID Controller for stabilization
class PIDController:
def __init__(self, kp, ki, kd):
self.kp = kp
self.ki = ki
self.kd = kd
self.prev_error = 0
self.integral = 0
def compute(self, setpoint, measured_value):
error = setpoint - measured_value
self.integral += error
derivative = error - self.prev_error
self.prev_error = error
return self.kp * error + self.ki * self.integral + self.kd * derivative
# Simulated Drone Motors
class DroneMotors:
def __init__(self):
self.speed = 50 # Base motor speed (0-100)
def adjust_speed(self, correction):
self.speed = max(0, min(100, self.speed + correction))
print(f"Motor Speed Adjusted: {self.speed}%")
# Initialize AI, PID, and Motors
ai_tracker = AIObjectTracker()
pid = PIDController(1.0, 0.1, 0.05)
motors = DroneMotors()
# Simulation Loop
print("Starting AI-powered Drone Simulation...")
for _ in range(20): # Simulating 20 frames
object_position = ai_tracker.get_object_position()
print(f"Detected Object Position: {object_position}")
correction = pid.compute(50, object_position) # Target is center (50)
motors.adjust_speed(correction)
time.sleep(0.5) # Simulated time delay