/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include<stdio.h>
#include "stm32c0xx.h"
#include "lcd.h" // Include a header file for LCD functions
#define TRIG_PIN GPIO_PIN_3 // PA3 - Trigger for ultrasonic sensor
#define ECHO_PIN GPIO_PIN_4 // PA4 - Echo for ultrasonic sensor
#define LED_PIN GPIO_PIN_1 // PA1
// Define the PWM frequency
#define PWM_FREQ 100 // Hz
// Define the PWM duty cycle range
#define PWM_DUTY_MIN 0
#define PWM_DUTY_MAX 100
void delay_us(uint32_t us);
uint32_t measure_distance();
void lcd_display_distance(uint32_t distance);
uint32_t calculate_speed();
void lcd_display_speed(uint32_t speed);
void control_led(uint32_t distance);
void change_led_speed(volatile uint32_t speed);
/* USER CODE END Includes */
volatile uint32_t speedCmPerS=0;
volatile uint32_t speedKmph=0;
volatile uint32_t previousTime = 0;
volatile uint32_t previousDistance = 0;
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_TIM1_Init();
/* USER CODE BEGIN 2 */
LCD_Init();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// uint32_t distance = measure_distance();
// printf("%u\n",distance);
// volatile uint32_t speed = calculate_speed();
// printf("%u\n",speed);
// lcd_display_speed(speed);
// HAL_Delay(1000);
// lcd_display_distance(distance);
// HAL_Delay(1000); //Wait 500ms before next measurement
uint32_t distance = measure_distance();
// printf("%u\n",distance);
volatile uint32_t speed = calculate_speed();
// printf("%u\n",speed);
lcd_display_speed(speed);
HAL_Delay(1000);
lcd_display_distance(distance);
HAL_Delay(1000); //Wait 500ms before next measurement
change_led_speed(speed);
// Update LED intensity based on speed
// uint32_t intensity = (uint32_t)((float)speed / 100.0 * 100.0); // Scale speed to 0-100 range
// if (intensity > 100) intensity = 100;
// __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, intensity);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x20303E5D;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 71;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3|GPIO_PIN_5|GPIO_PIN_9, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_7, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
GPIO_InitTypeDef gpio_init;
gpio_init.Pin = GPIO_PIN_1;
gpio_init.Mode = GPIO_MODE_AF_PP;
gpio_init.Pull = GPIO_NOPULL;
gpio_init.Speed = GPIO_SPEED_FREQ_HIGH;
gpio_init.Alternate = GPIO_AF2_TIM1;
HAL_GPIO_Init(GPIOA, &gpio_init);
/*Configure GPIO pin : User_Button_Pin */
GPIO_InitStruct.Pin = User_Button_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(User_Button_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PA3 PA5 PA9 */
GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_5|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB1 PB2 PB3
PB4 PB5 PB7 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PC7 */
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI4_15_IRQn);
// Configure PA1 as output for LED
GPIO_InitTypeDef gpio_init_led;
gpio_init_led.Pin = GPIO_PIN_1;
gpio_init_led.Mode = GPIO_MODE_OUTPUT_PP;
gpio_init_led.Pull = GPIO_NOPULL;
gpio_init_led.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &gpio_init_led);
}
/* USER CODE BEGIN 4 */
void control_led(uint32_t distance) {
if (distance < 100) {
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET); // Turn on LED
} else {
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET); // Turn off LED
}
}
uint32_t calculate_speed() {
uint32_t currentTime = HAL_GetTick();
uint32_t currentDistance = measure_distance();
// float timeDiff = (float)(currentTime - previousTime) / 1000.0f; // in seconds
// if (timeDiff > 0) {
// float speed = (currentDistance - previousDistance) / timeDiff; // in cm/s
// float speedKmph = speed * 3.6; // convert to km/h
// previousTime = currentTime;
// previousDistance = currentDistance;
// if (currentDistance > 100) {
// speedKmph = 100;
// } else if (currentDistance >= 20) {
// speedKmph = 100 - (float)(currentDistance - 20) / 5 * 10;
// } else {
// speedKmph = 0;
// }
// return (float)speedKmph;
// } else {
// return 0;
// }
// printf("Current Time: %u\n", currentTime);
// printf("Current Distance: %u\n", currentDistance);
if (previousTime == 0) {
previousTime = currentTime;
previousDistance = currentDistance;
return 0; // Return 0 on the first call
}
uint32_t timeDiff = currentTime - previousTime;
uint32_t distanceDiff = (currentDistance - previousDistance);
// printf("Time Diff: %u\n", timeDiff);
// printf("Distance Diff: %u\n", distanceDiff);
if (timeDiff == 0 || distanceDiff == 0) {
// printf("Time diff or distance diff is zero!\n");
return 0; // Avoid division by zero or zero speed
}
speedCmPerS = (float)distanceDiff / ((float)timeDiff / 1000.0);
speedKmph = speedCmPerS * 3.6; // Convert cm/s to km/h
// printf("Speed cm/s: %u\n", speedCmPerS);
// printf("Speed km/h: %u\n", speedKmph);
previousTime = currentTime;
previousDistance = currentDistance;
return speedKmph;
}
void change_led_speed(volatile uint32_t speed)
{
/* Limit the speed to the duty cycle range */
if (speed < PWM_DUTY_MIN) speed = PWM_DUTY_MIN;
if (speed > PWM_DUTY_MAX) speed = PWM_DUTY_MAX;
/* Set the PWM duty cycle */
uint32_t pulse = (uint32_t)((speed / 100.0) * (htim1.Init.Period));
htim1.Instance->CCMR1 |= TIM_CCMR1_OC1M_2; // Set the OC mode to PWM
htim1.Instance->CCER |= TIM_CCER_CC1E; // Enable the OC output
htim1.Instance->CCR1 = pulse; // Set the PWM duty cycle
}
void lcd_display_speed(uint32_t speed) {
char buffer[30];
sprintf(buffer, "Speed: %lu km/h", speed);
HAL_Delay(1000);
LCD_Clear();
LCD_SetCursor(0, 0);
LCD_Print(buffer);
}
uint32_t measure_distance() {
uint32_t startTime = 0, stopTime = 0;
// Send trigger pulse (10us HIGH)
HAL_GPIO_WritePin(GPIOA, TRIG_PIN, GPIO_PIN_SET);
delay_us(10);
HAL_GPIO_WritePin(GPIOA, TRIG_PIN, GPIO_PIN_RESET);
// Wait for echo to go HIGH
while (HAL_GPIO_ReadPin(GPIOA, ECHO_PIN) == GPIO_PIN_RESET);
// Start timer
__HAL_TIM_SET_COUNTER(&htim1, 0);
startTime = HAL_GetTick(); // Record start time in milliseconds
// Wait for echo to go LOW
while (HAL_GPIO_ReadPin(GPIOA, ECHO_PIN) == GPIO_PIN_SET);
stopTime = HAL_GetTick(); // Record stop time in milliseconds
// Calculate distance in cm
float time = (float)(stopTime - startTime) / 1000.0f; // Convert time to seconds
float dist = (time * 34300.0 / 2.0); // Calculate distance in cm
control_led(dist); // Control LED based on distance
return (uint32_t)dist;
}
void lcd_display_distance(uint32_t distance) {
char buffer[16];
sprintf(buffer, "Distance: %2d cm", (int)distance);
LCD_Clear();
LCD_SetCursor(0, 0);
LCD_Print(buffer);
}
void delay_us(uint32_t us) {
uint32_t start_time = HAL_GetTick();
while((HAL_GetTick() - start_time) < us);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */