//#include "main.h"
#include "stm32f1xx_hal.h"
// Pin Definitions
#define SERVO_PIN GPIO_PIN_8 // PA8 (PWM)
#define SERVO_PORT GPIOA
#define BUTTON_PIN GPIO_PIN_2 // PA2
#define BUTTON_PORT GPIOA
#define LED_PIN GPIO_PIN_4 // PA4
#define LED_PORT GPIOA
// Servo Position
#define SERVO_OPEN_ANGLE 180
#define SERVO_CLOSE_ANGLE 0
// Variables
uint8_t buttonPressed = 0;
uint8_t servoPosition = 0; // 0 = Closed, 1 = Open
TIM_HandleTypeDef htim1;
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM1_Init(void);
static void MX_USART2_UART_Init(void);
// Function Prototypes
void setServoAngle(uint8_t angle);
void openServo(void);
void closeServo(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_TIM1_Init();
MX_USART2_UART_Init();
if (SysTick_Config(SystemCoreClock / 1000))
{
while (1) { /* no error must happen here, otherwise this board is dead */ }
}
printf("SystemCoreClock: %ld\n\n", SystemCoreClock);
printf("Hello, %s!\n", "Wokwi");
// Start PWM for Servo
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
// Close Servo initially
closeServo();
while (1)
{
// Read button state
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) == GPIO_PIN_RESET && !buttonPressed) {
buttonPressed = 1;
servoPosition = !servoPosition;
if (servoPosition) {
openServo();
} else {
closeServo();
}
}
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) == GPIO_PIN_SET) {
buttonPressed = 0;
}
}
}
void setServoAngle(uint8_t angle)
{
uint32_t pulse = 1000 + (angle * 1000 / 180); // Map angle to PWM pulse (1000-2000us)
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, pulse);
}
void openServo(void)
{
setServoAngle(SERVO_OPEN_ANGLE);
HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_SET); // LED ON
}
void closeServo(void)
{
setServoAngle(SERVO_CLOSE_ANGLE);
HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_RESET); // LED OFF
}
/**
@brief System Clock Configuration
@retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/* Initializes the CPU, AHB and APB busses clocks */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Initializes the CPU, AHB and APB busses clocks */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
// HAL initialization functions for GPIO and TIM
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = BUTTON_PIN | LED_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SERVO_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SERVO_PORT, &GPIO_InitStruct);
}
static void MX_TIM1_Init(void)
{
TIM_OC_InitTypeDef sConfigOC = {0};
__HAL_RCC_TIM1_CLK_ENABLE();
htim1.Instance = TIM1;
htim1.Init.Prescaler = 72 - 1; // 1 MHz timer frequency
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 20000 - 1; // 20 ms period (50 Hz)
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
HAL_TIM_PWM_Init(&htim1);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
}
/**
@brief USART2 Initialization Function
@param None
@retval None
*/
static void MX_USART2_UART_Init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
/**
USART2 GPIO Configuration
PA2 ------> USART2_TX
PA15 ------> USART2_RX
*/
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
// GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
// GPIO_InitStruct.Alternate = GPIO_AF4_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
// huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
// huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
__HAL_RCC_USART2_CLK_ENABLE();
}
// The following makes printf() write to USART2:
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
int _write(int file, uint8_t *ptr, int len)
{
switch (file)
{
case STDOUT_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
case STDERR_FILENO:
HAL_UART_Transmit(&huart2, ptr, len, HAL_MAX_DELAY);
break;
default:
return -1;
}
return len;
}