/*
* STM32 Wearable Stress Detection Simulation - Fixed Version
* - PPG simulated via Potentiometer on PA0
* - GSR simulated via Potentiometer on PA1
* - OLED SSD1306 via I2C (PB6: SCL, PB7: SDA)
* - Includes I2C scanner for debugging
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include <stm32f1xx_hal.h>
#include "ssd1306.h"
#include "fonts.h"
#define ADC_RESOLUTION 4096
#define VREF 3.3f
I2C_HandleTypeDef hi2c1;
ADC_HandleTypeDef hadc1;
uint32_t lastPeakTime = 0;
bool peakDetected = false;
float hrBPM = 0.0f;
float gsrVolt = 0.0f;
int stressLevel = 0;
void SystemClock_Config(void);
void GPIO_Init(void);
void ADC1_Init(void);
void MX_I2C1_Init(void);
void Error_Handler(void);
uint16_t ADC_Read(uint32_t channel);
void ScanI2CDevices(void);
float computeHR(uint32_t rrIntervalMs);
int determineStressLevel(float hr, float gsr);
void OLED_Display(float hr, float gsr, int stressLevel);
int main(void) {
HAL_Init();
SystemClock_Config();
GPIO_Init();
ADC1_Init();
MX_I2C1_Init();
// Initialize OLED
ssd1306_Init();
ssd1306_Fill(Black);
ssd1306_UpdateScreen();
// Debug: Scan I2C devices
ScanI2CDevices();
HAL_Delay(2000);
// Main loop
while (1) {
uint32_t currentMillis = HAL_GetTick();
// Read GSR (simulated)
uint16_t gsrRaw = ADC_Read(ADC_CHANNEL_1);
gsrVolt = (gsrRaw * VREF) / ADC_RESOLUTION;
// Read PPG (simulated via potentiometer)
uint16_t ppgRaw = ADC_Read(ADC_CHANNEL_0);
// Simulate PPG peak detection
if (ppgRaw > 2500 && !peakDetected) {
uint32_t rrInterval = currentMillis - lastPeakTime;
lastPeakTime = currentMillis;
peakDetected = true;
if (rrInterval >= 300 && rrInterval <= 2000) {
hrBPM = computeHR(rrInterval);
}
}
if (ppgRaw < 2000) {
peakDetected = false;
}
// Calculate stress level
stressLevel = determineStressLevel(hrBPM, gsrVolt);
// Update display
OLED_Display(hrBPM, gsrVolt, stressLevel);
HAL_Delay(100);
}
}
void ScanI2CDevices(void) {
uint8_t found = 0;
char msg[32];
ssd1306_Fill(Black);
for (uint8_t addr = 1; addr < 127; addr++) {
if (HAL_I2C_IsDeviceReady(&hi2c1, addr << 1, 3, 10) == HAL_OK) {
sprintf(msg, "I2C: 0x%02X found", addr);
ssd1306_SetCursor(0, 0);
ssd1306_WriteString(msg, Font_7x10, White);
ssd1306_UpdateScreen();
found = 1;
HAL_Delay(1000);
}
}
if (!found) {
ssd1306_SetCursor(0, 0);
ssd1306_WriteString("No I2C devices!", Font_7x10, White);
ssd1306_UpdateScreen();
}
}
float computeHR(uint32_t rrIntervalMs) {
return 60000.0f / rrIntervalMs;
}
int determineStressLevel(float hr, float gsr) {
int level_hr = (hr > 120) ? 2 : (hr > 90) ? 1 : 0;
int level_gsr = (gsr > 2.5f) ? 2 : (gsr >= 1.5f) ? 1 : 0;
return (level_hr > level_gsr) ? level_hr : level_gsr;
}
void OLED_Display(float hr, float gsr, int stressLevel) {
char line1[20], line2[20], line3[20];
sprintf(line1, "HR: %.1f BPM", hr);
sprintf(line2, "GSR: %.2f V", gsr);
sprintf(line3, "Stress: %d", stressLevel);
ssd1306_Fill(Black);
ssd1306_SetCursor(0, 0);
ssd1306_WriteString(line1, Font_7x10, White);
ssd1306_SetCursor(0, 12);
ssd1306_WriteString(line2, Font_7x10, White);
ssd1306_SetCursor(0, 24);
ssd1306_WriteString(line3, Font_7x10, White);
ssd1306_UpdateScreen();
}
void GPIO_Init(void) {
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_AFIO_CLK_ENABLE();
// Configure I2C pins (PB6: SCL, PB7: SDA)
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_6 | GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// Configure analog inputs (PA0: PPG, PA1: GSR)
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void ADC1_Init(void) {
__HAL_RCC_ADC1_CLK_ENABLE();
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
HAL_ADC_Init(&hadc1);
HAL_ADCEx_Calibration_Start(&hadc1);
}
void MX_I2C1_Init(void) {
__HAL_RCC_I2C1_CLK_ENABLE();
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK) {
Error_Handler();
}
}
uint16_t ADC_Read(uint32_t channel) {
ADC_ChannelConfTypeDef sConfig = {0};
sConfig.Channel = channel;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
uint16_t val = HAL_ADC_GetValue(&hadc1);
HAL_ADC_Stop(&hadc1);
return val;
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
}
void Error_Handler(void) {
while(1);
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line) {
while(1);
}
#endif