//PROYECTO MAESTRO
// --- LIBRERÍAS COMUNES ---
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <ESP32Encoder.h>
#include <math.h>
// --- CONFIGURACIÓN DE PANTALLA OLED (I2C) ---
#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
#define OLED_RESET -1
#define SCREEN_ADDRESS 0x3C
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
// --- CONFIGURACIÓN DE ENCODERS ---
#define VOL_CLK_PIN 12
#define VOL_DT_PIN 13
#define GAIN_CLK_PIN 1 //TX
#define GAIN_DT_PIN 3 //RX
#define HIGH_CLK_PIN 34
#define HIGH_DT_PIN 35
#define MID_HIGH_CLK_PIN 32
#define MID_HIGH_DT_PIN 33
#define MID_LOW_CLK_PIN 25
#define MID_LOW_DT_PIN 26
#define LOW_CLK_PIN 27
#define LOW_DT_PIN 14
// --- CONFIGURACIÓN DE POTENCIÓMETROS DIGITALES (SPI) ---
// Pines SPI: MOSI=23, MISO=19, SCK=18
#define VOL_CS_PIN 15
#define GAIN_CS_PIN 5 //CS/SS
#define HIGH_CS_PIN 17 //TX2
#define MID_HIGH_CS_PIN 16 //RX2
#define MID_LOW_CS_PIN 4
#define LOW_CS_PIN 19
// --- CONFIGURACIÓN DEL VÚMETRO ---
#define VOLTAGE_IN_L 36 // Canal Izquierdo (ADC1_CH0)
#define VOLTAGE_IN_R 39 // Canal Derecho (ADC1_CH3)
#define SAMPLES_AVG 64
#define ADC_MAX_VALUE 4095
#define ADC_REF_0DB 1106.0 // Valor ADC que corresponde a 0dB
#define DB_MIN -30.0
#define DB_MAX 11.4
#define PEAK_HOLD_MS 1500
#define PEAK_DECAY_RATE 0.35
// --- PARÁMETROS DE FUNCIONAMIENTO ---
#define DISPLAY_TIMEOUT_MS 3000 // 3 segundos para volver al vúmetro
const int POT_MAX_STEPS = 255;
#define ENCODER_STEPS_PER_DB 2
// Rangos de Decibelios (dB) para los controles
const int VOL_MIN = -80, VOL_MAX = 10;
const int GAIN_MIN = -20, GAIN_MAX = 20;
const int EQ_MIN = -15, EQ_MAX = 15;
// --- OBJETOS GLOBALES ---
ESP32Encoder encoderVol;
ESP32Encoder encoderGain;
ESP32Encoder encoderHigh;
ESP32Encoder encoderMidHigh;
ESP32Encoder encoderMidLow;
ESP32Encoder encoderLow;
// --- VARIABLES DE ESTADO GLOBALES ---
// Para los controles
int currentVolDB = 0;
int currentGainDB = 0;
int currentHighDB = 0;
int currentMidHighDB = 0;
int currentMidLowDB = 0;
int currentLowDB = 0;
// Para el vúmetro
double peakL = DB_MIN;
double peakR = DB_MIN;
unsigned long lastPeakTimeL = 0;
unsigned long lastPeakTimeR = 0;
// Para la gestión de la pantalla
enum DisplayMode { MODE_VUMETER, MODE_PARAM };
DisplayMode currentMode = MODE_VUMETER;
unsigned long lastInteractionTime = 0;
// --- PROTOTIPOS DE FUNCIONES ---
void writeToPot(int csPin, byte address, byte value);
void setPotValue(int csPin, int dbValue, int dbMin, int dbMax);
void actualizarPantallaParametro(const char *paramName, int currentValue, int minValue, int maxValue);
void drawVUMeterBar(int x_start, int y_start, double dbValue, double peakDbValue);
void actualizarVUMeter();
// =====================================================================================
// === SETUP ===
// =====================================================================================
void setup() {
//Serial.begin(115200);
// --- Inicialización de Buses ---
SPI.begin();
Wire.begin(); // Necesario para la pantalla OLED
// --- Inicialización de Pines CS para Potenciómetros ---
pinMode(VOL_CS_PIN, OUTPUT);
pinMode(GAIN_CS_PIN, OUTPUT);
pinMode(HIGH_CS_PIN, OUTPUT);
pinMode(MID_HIGH_CS_PIN, OUTPUT);
pinMode(MID_LOW_CS_PIN, OUTPUT);
pinMode(LOW_CS_PIN, OUTPUT);
digitalWrite(VOL_CS_PIN, HIGH);
digitalWrite(GAIN_CS_PIN, HIGH);
digitalWrite(HIGH_CS_PIN, HIGH);
digitalWrite(MID_HIGH_CS_PIN, HIGH);
digitalWrite(MID_LOW_CS_PIN, HIGH);
digitalWrite(LOW_CS_PIN, HIGH);
// --- Inicialización de Encoders ---
encoderVol.attachHalfQuad(VOL_DT_PIN, VOL_CLK_PIN);
encoderVol.setCount(VOL_MIN * ENCODER_STEPS_PER_DB);
currentVolDB = VOL_MIN;
encoderGain.attachHalfQuad(GAIN_DT_PIN, GAIN_CLK_PIN);
encoderGain.setCount(0 * ENCODER_STEPS_PER_DB);
encoderHigh.attachHalfQuad(HIGH_DT_PIN, HIGH_CLK_PIN);
encoderHigh.setCount(0 * ENCODER_STEPS_PER_DB);
encoderMidHigh.attachHalfQuad(MID_HIGH_DT_PIN, MID_HIGH_CLK_PIN);
encoderMidHigh.setCount(0 * ENCODER_STEPS_PER_DB);
encoderMidLow.attachHalfQuad(MID_LOW_DT_PIN, MID_LOW_CLK_PIN);
encoderMidLow.setCount(0 * ENCODER_STEPS_PER_DB);
encoderLow.attachHalfQuad(LOW_DT_PIN, LOW_CLK_PIN);
encoderLow.setCount(0 * ENCODER_STEPS_PER_DB);
// --- Configurar estado inicial de los potenciómetros ---
setPotValue(VOL_CS_PIN, currentVolDB, VOL_MIN, VOL_MAX);
setPotValue(GAIN_CS_PIN, currentGainDB, GAIN_MIN, GAIN_MAX);
setPotValue(HIGH_CS_PIN, currentHighDB, EQ_MIN, EQ_MAX);
setPotValue(MID_HIGH_CS_PIN, currentMidHighDB, EQ_MIN, EQ_MAX);
setPotValue(MID_LOW_CS_PIN, currentMidLowDB, EQ_MIN, EQ_MAX);
setPotValue(LOW_CS_PIN, currentLowDB, EQ_MIN, EQ_MAX);
// --- Inicialización de la pantalla OLED ---
display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS);
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(SSD1306_WHITE);
display.setCursor(15, 24);
display.println("PATRO DJ");
display.display();
delay(1500);
// Iniciar temporizador para la gestión de pantalla
lastInteractionTime = millis();
currentMode = MODE_VUMETER; // Empezar mostrando el vúmetro
}
// =====================================================================================
// === MAIN LOOP ===
// =====================================================================================
void loop() {
bool interaction = false; // Flag para detectar si hubo alguna interacción en este ciclo
// --- 1. LEER ENCODERS Y ACTUALIZAR PARÁMETROS ---
long newVol = encoderVol.getCount() / ENCODER_STEPS_PER_DB;
if (newVol > VOL_MAX) { newVol = VOL_MAX; encoderVol.setCount(newVol * ENCODER_STEPS_PER_DB); }
if (newVol < VOL_MIN) { newVol = VOL_MIN; encoderVol.setCount(newVol * ENCODER_STEPS_PER_DB); }
if (newVol != currentVolDB) {
currentVolDB = newVol;
actualizarPantallaParametro("VOLUMEN", currentVolDB, VOL_MIN, VOL_MAX);
setPotValue(VOL_CS_PIN, currentVolDB, VOL_MIN, VOL_MAX);
interaction = true;
}
long newGain = encoderGain.getCount() / ENCODER_STEPS_PER_DB;
if (newGain > GAIN_MAX) { newGain = GAIN_MAX; encoderGain.setCount(newGain * ENCODER_STEPS_PER_DB); }
if (newGain < GAIN_MIN) { newGain = GAIN_MIN; encoderGain.setCount(newGain * ENCODER_STEPS_PER_DB); }
if (newGain != currentGainDB) {
currentGainDB = newGain;
actualizarPantallaParametro("GAIN", currentGainDB, GAIN_MIN, GAIN_MAX);
setPotValue(GAIN_CS_PIN, currentGainDB, GAIN_MIN, GAIN_MAX);
interaction = true;
}
long newHigh = encoderHigh.getCount() / ENCODER_STEPS_PER_DB;
if (newHigh > EQ_MAX) { newHigh = EQ_MAX; encoderHigh.setCount(newHigh * ENCODER_STEPS_PER_DB); }
if (newHigh < EQ_MIN) { newHigh = EQ_MIN; encoderHigh.setCount(newHigh * ENCODER_STEPS_PER_DB); }
if (newHigh != currentHighDB) {
currentHighDB = newHigh;
actualizarPantallaParametro("HIGH", currentHighDB, EQ_MIN, EQ_MAX);
setPotValue(HIGH_CS_PIN, currentHighDB, EQ_MIN, EQ_MAX);
interaction = true;
}
long newMidHigh = encoderMidHigh.getCount() / ENCODER_STEPS_PER_DB;
if (newMidHigh > EQ_MAX) { newMidHigh = EQ_MAX; encoderMidHigh.setCount(newMidHigh * ENCODER_STEPS_PER_DB); }
if (newMidHigh < EQ_MIN) { newMidHigh = EQ_MIN; encoderMidHigh.setCount(newMidHigh * ENCODER_STEPS_PER_DB); }
if (newMidHigh != currentMidHighDB) {
currentMidHighDB = newMidHigh;
actualizarPantallaParametro("MID HIGH", currentMidHighDB, EQ_MIN, EQ_MAX);
setPotValue(MID_HIGH_CS_PIN, currentMidHighDB, EQ_MIN, EQ_MAX);
interaction = true;
}
long newMidLow = encoderMidLow.getCount() / ENCODER_STEPS_PER_DB;
if (newMidLow > EQ_MAX) { newMidLow = EQ_MAX; encoderMidLow.setCount(newMidLow * ENCODER_STEPS_PER_DB); }
if (newMidLow < EQ_MIN) { newMidLow = EQ_MIN; encoderMidLow.setCount(newMidLow * ENCODER_STEPS_PER_DB); }
if (newMidLow != currentMidLowDB) {
currentMidLowDB = newMidLow;
actualizarPantallaParametro("MID LOW", currentMidLowDB, EQ_MIN, EQ_MAX);
setPotValue(MID_LOW_CS_PIN, currentMidLowDB, EQ_MIN, EQ_MAX);
interaction = true;
}
long newLow = encoderLow.getCount() / ENCODER_STEPS_PER_DB;
if (newLow > EQ_MAX) { newLow = EQ_MAX; encoderLow.setCount(newLow * ENCODER_STEPS_PER_DB); }
if (newLow < EQ_MIN) { newLow = EQ_MIN; encoderLow.setCount(newLow * ENCODER_STEPS_PER_DB); }
if (newLow != currentLowDB) {
currentLowDB = newLow;
actualizarPantallaParametro("LOW", currentLowDB, EQ_MIN, EQ_MAX);
setPotValue(LOW_CS_PIN, currentLowDB, EQ_MIN, EQ_MAX);
interaction = true;
}
// --- 2. GESTIONAR EL MODO DE LA PANTALLA ---
if (interaction) {
lastInteractionTime = millis();
currentMode = MODE_PARAM;
} else {
if (currentMode == MODE_PARAM && (millis() - lastInteractionTime > DISPLAY_TIMEOUT_MS)) {
currentMode = MODE_VUMETER;
}
}
// --- 3. DIBUJAR EN PANTALLA SEGÚN EL MODO ---
if (currentMode == MODE_VUMETER) {
actualizarVUMeter();
delay(50); // Delay para el refresco del vúmetro
} else {
// No es necesario redibujar la pantalla de parámetros en cada ciclo.
// Ya se actualizó al mover el encoder.
delay(20); // Pequeño delay para no saturar el loop
}
}
// =====================================================================================
// === FUNCIONES DE LA CONTROLADORA ===
// =====================================================================================
// Envía un comando de escritura al MCP4231
void writeToPot(int csPin, byte address, byte value) {
SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));
digitalWrite(csPin, LOW);
SPI.transfer(address);
SPI.transfer(value);
digitalWrite(csPin, HIGH);
SPI.endTransaction();
}
// Convierte dB a valor de potenciómetro y lo envía
void setPotValue(int csPin, int dbValue, int dbMin, int dbMax) {
// Mapeo invertido: valor más alto de dB (ej. 0) corresponde al valor más bajo del pote (0), y viceversa.
// Esto asume que el potenciómetro atenúa la señal. Si es al revés, invierte POT_MAX_STEPS y 0.
long potStep = map(dbValue, dbMin, dbMax, POT_MAX_STEPS, 0);
potStep = constrain(potStep, 0, POT_MAX_STEPS);
// Escribir en ambos potenciómetros del chip (Wiper 0 y Wiper 1)
writeToPot(csPin, 0x00, (byte)potStep); // Dirección Wiper 0
writeToPot(csPin, 0x10, (byte)potStep); // Dirección Wiper 1
}
// Dibuja la pantalla de ajuste de un parámetro
void actualizarPantallaParametro(const char *paramName, int currentValue, int minValue, int maxValue) {
display.clearDisplay();
// 1. Dibuja el nombre y el valor numérico
display.setTextSize(2);
display.setTextColor(SSD1306_WHITE);
int16_t x1, y1;
uint16_t w, h;
display.getTextBounds(paramName, 0, 0, &x1, &y1, &w, &h);
display.setCursor((SCREEN_WIDTH - w) / 2, 2);
display.println(paramName);
char dbStr[10];
sprintf(dbStr, "%+d dB", currentValue);
display.getTextBounds(dbStr, 0, 0, &x1, &y1, &w, &h);
display.setCursor((SCREEN_WIDTH - w) / 2, 20);
display.print(dbStr);
// 2. Dibuja la barra de progreso
int barWidth = map(currentValue, minValue, maxValue, 0, SCREEN_WIDTH);
display.drawRect(0, 42, SCREEN_WIDTH, 16, SSD1306_WHITE);
if (minValue < 0 && maxValue > 0) { // Si la barra es bipolar (ej. -15 a +15)
int zeroPoint = map(0, minValue, maxValue, 0, SCREEN_WIDTH);
display.drawFastVLine(zeroPoint, 40, 20, SSD1306_WHITE); // Línea central en 0
if (barWidth > zeroPoint) {
display.fillRect(zeroPoint, 42, barWidth - zeroPoint, 16, SSD1306_WHITE);
} else {
display.fillRect(barWidth, 42, zeroPoint - barWidth, 16, SSD1306_WHITE);
}
} else { // Si la barra es unipolar (ej. -80 a 0)
display.fillRect(0, 42, barWidth, 16, SSD1306_WHITE);
}
// 3. Muestra todo en la pantalla
display.display();
}
// =====================================================================================
// === FUNCIONES DEL VÚMETRO ===
// =====================================================================================
// Dibuja una barra del vúmetro con segmentos
void drawVUMeterBar(int x_start, int y_start, double dbValue, double peakDbValue) {
#define BAR_LENGTH 100
#define BAR_HEIGHT 20
#define SEGMENT_WIDTH 3
#define SEGMENT_SPACING 1
int totalSegments = BAR_LENGTH / (SEGMENT_WIDTH + SEGMENT_SPACING);
display.drawRect(x_start - 1, y_start - 1, BAR_LENGTH + 2, BAR_HEIGHT + 2, SSD1306_WHITE);
int activeSegments = map(dbValue, DB_MIN, DB_MAX, 0, totalSegments);
activeSegments = constrain(activeSegments, 0, totalSegments);
for (int i = 0; i < activeSegments; i++) {
int xPos = x_start + (i * (SEGMENT_WIDTH + SEGMENT_SPACING));
display.fillRect(xPos, y_start, SEGMENT_WIDTH, BAR_HEIGHT, SSD1306_WHITE);
}
int peakSegment = map(peakDbValue, DB_MIN, DB_MAX, 0, totalSegments);
peakSegment = constrain(peakSegment, 0, totalSegments);
int peakXPos = x_start + (peakSegment * (SEGMENT_WIDTH + SEGMENT_SPACING));
if (peakXPos < x_start + BAR_LENGTH) {
display.fillRect(peakXPos, y_start, SEGMENT_WIDTH, BAR_HEIGHT, SSD1306_WHITE);
}
}
// Lee los ADC, calcula los dB y actualiza la pantalla del vúmetro
void actualizarVUMeter() {
// 1. Muestreo y promedio de voltajes
unsigned long totalL = 0;
unsigned long totalR = 0;
for (int i = 0; i < SAMPLES_AVG; i++) {
totalL += analogRead(VOLTAGE_IN_L);
totalR += analogRead(VOLTAGE_IN_R);
}
double dbL = (totalL == 0) ? DB_MIN : 20 * log10((double)(totalL / SAMPLES_AVG) / ADC_REF_0DB);
double dbR = (totalR == 0) ? DB_MIN : 20 * log10((double)(totalR / SAMPLES_AVG) / ADC_REF_0DB);
// 2. Lógica de Peak-Hold
unsigned long currentTime = millis();
if (dbL >= peakL) {
peakL = dbL;
lastPeakTimeL = currentTime;
} else if (currentTime - lastPeakTimeL > PEAK_HOLD_MS) {
peakL -= PEAK_DECAY_RATE;
if (peakL < dbL) peakL = dbL;
if (peakL < DB_MIN) peakL = DB_MIN;
}
if (dbR >= peakR) {
peakR = dbR;
lastPeakTimeR = currentTime;
} else if (currentTime - lastPeakTimeR > PEAK_HOLD_MS) {
peakR -= PEAK_DECAY_RATE;
if (peakR < dbR) peakR = dbR;
if (peakR < DB_MIN) peakR = DB_MIN;
}
// 3. Dibujar en pantalla
display.clearDisplay();
int label_x = 9;
int bar_x_start = 26;
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
// Canal Izquierdo (L)
drawVUMeterBar(bar_x_start, 4, dbL, peakL);
display.setCursor(1, 12);
int roundedDbL = round(dbL);
if (roundedDbL > 0) display.print("+");
display.print(roundedDbL);
display.setCursor(label_x, 3);
display.print("L");
display.setCursor(6, 20);
display.print("dB");
// Canal Derecho (R)
drawVUMeterBar(bar_x_start, 39, dbR, peakR);
display.setCursor(1, 47);
int roundedDbR = round(dbR);
if (roundedDbR > 0) display.print("+");
display.print(roundedDbR);
display.setCursor(label_x, 37);
display.print("R");
display.setCursor(6, 55);
display.print("dB");
// Nombre
display.setCursor(52, 28);
display.print("PATRO DJ");
display.display();
}